Limit sets for maps of the circle
Matematičeskie zametki, Tome 79 (2006) no. 5, pp. 736-742

Voir la notice de l'article provenant de la source Math-Net.Ru

A trick which reduces some questions concerning the dynamics of self-maps of the circle to similar questions about self-maps of the interval is suggested and applied to answer two questions of Block and Coppel.
@article{MZM_2006_79_5_a9,
     author = {V. V. Redkozubov},
     title = {Limit sets for maps of the circle},
     journal = {Matemati\v{c}eskie zametki},
     pages = {736--742},
     publisher = {mathdoc},
     volume = {79},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a9/}
}
TY  - JOUR
AU  - V. V. Redkozubov
TI  - Limit sets for maps of the circle
JO  - Matematičeskie zametki
PY  - 2006
SP  - 736
EP  - 742
VL  - 79
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a9/
LA  - ru
ID  - MZM_2006_79_5_a9
ER  - 
%0 Journal Article
%A V. V. Redkozubov
%T Limit sets for maps of the circle
%J Matematičeskie zametki
%D 2006
%P 736-742
%V 79
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a9/
%G ru
%F MZM_2006_79_5_a9
V. V. Redkozubov. Limit sets for maps of the circle. Matematičeskie zametki, Tome 79 (2006) no. 5, pp. 736-742. http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a9/