Bernstein theorems and transformations of correlation measures in statistical physics
Matematičeskie zametki, Tome 79 (2006) no. 5, pp. 700-716

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the class of endomorphisms of the cone of correlation functions generated by probability measures. We consider algebraic properties of the products $(\,\cdot\,{,}\,\star)$ and the maps $K$, $K^{-1}$ which establish relationships between the properties of functions on the configuration space and the properties of the corresponding operators (matrices with Boolean indices): $F(\gamma)\to \widehat F_\cup(\gamma)=\{F(\alpha\cup\beta)\}_{\alpha,\beta\subset\gamma}$. For the operators $\widehat F_\cup(\gamma)$ and $\widehat F_\cap(\gamma)$, we prove conditions which ensure that these operators are positive definite; the conditions are given in terms of complete or absolute monotonicity properties of the function $F(\gamma)$.
@article{MZM_2006_79_5_a6,
     author = {Yu. G. Kondrat'ev and A. M. Chebotarev},
     title = {Bernstein theorems and transformations of correlation measures in statistical physics},
     journal = {Matemati\v{c}eskie zametki},
     pages = {700--716},
     publisher = {mathdoc},
     volume = {79},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a6/}
}
TY  - JOUR
AU  - Yu. G. Kondrat'ev
AU  - A. M. Chebotarev
TI  - Bernstein theorems and transformations of correlation measures in statistical physics
JO  - Matematičeskie zametki
PY  - 2006
SP  - 700
EP  - 716
VL  - 79
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a6/
LA  - ru
ID  - MZM_2006_79_5_a6
ER  - 
%0 Journal Article
%A Yu. G. Kondrat'ev
%A A. M. Chebotarev
%T Bernstein theorems and transformations of correlation measures in statistical physics
%J Matematičeskie zametki
%D 2006
%P 700-716
%V 79
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a6/
%G ru
%F MZM_2006_79_5_a6
Yu. G. Kondrat'ev; A. M. Chebotarev. Bernstein theorems and transformations of correlation measures in statistical physics. Matematičeskie zametki, Tome 79 (2006) no. 5, pp. 700-716. http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a6/