Bernstein theorems and transformations of correlation measures in statistical physics
Matematičeskie zametki, Tome 79 (2006) no. 5, pp. 700-716.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the class of endomorphisms of the cone of correlation functions generated by probability measures. We consider algebraic properties of the products $(\,\cdot\,{,}\,\star)$ and the maps $K$, $K^{-1}$ which establish relationships between the properties of functions on the configuration space and the properties of the corresponding operators (matrices with Boolean indices): $F(\gamma)\to \widehat F_\cup(\gamma)=\{F(\alpha\cup\beta)\}_{\alpha,\beta\subset\gamma}$. For the operators $\widehat F_\cup(\gamma)$ and $\widehat F_\cap(\gamma)$, we prove conditions which ensure that these operators are positive definite; the conditions are given in terms of complete or absolute monotonicity properties of the function $F(\gamma)$.
@article{MZM_2006_79_5_a6,
     author = {Yu. G. Kondrat'ev and A. M. Chebotarev},
     title = {Bernstein theorems and transformations of correlation measures in statistical physics},
     journal = {Matemati\v{c}eskie zametki},
     pages = {700--716},
     publisher = {mathdoc},
     volume = {79},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a6/}
}
TY  - JOUR
AU  - Yu. G. Kondrat'ev
AU  - A. M. Chebotarev
TI  - Bernstein theorems and transformations of correlation measures in statistical physics
JO  - Matematičeskie zametki
PY  - 2006
SP  - 700
EP  - 716
VL  - 79
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a6/
LA  - ru
ID  - MZM_2006_79_5_a6
ER  - 
%0 Journal Article
%A Yu. G. Kondrat'ev
%A A. M. Chebotarev
%T Bernstein theorems and transformations of correlation measures in statistical physics
%J Matematičeskie zametki
%D 2006
%P 700-716
%V 79
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a6/
%G ru
%F MZM_2006_79_5_a6
Yu. G. Kondrat'ev; A. M. Chebotarev. Bernstein theorems and transformations of correlation measures in statistical physics. Matematičeskie zametki, Tome 79 (2006) no. 5, pp. 700-716. http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a6/

[1] Kondratiev Yu. G., Kuna T., Harmonic analysis on configuration space. I: General theory, SFB 256. Preprint No 626, Univ. of Bonn, 1999 | MR

[2] Kondratiev Yu. G., Kuna T., “Harmonic analysis on configuration space. I: General theory”, Infinite Dimensional Analysis and Quantum Probability, 5:2 (2002), 201–233 | DOI | MR | Zbl

[3] Lenard A., “States of classical statistical mechanical systems of infinitly many particles, II”, Arch. Rational Mech. Anal., 59 (1975), 241–256 | MR

[4] Bogoliubov N. N., Problems of the Dynamical Theory in Statistical Physics, Gostekhisdat, Moscow, 1946

[5] Pastur L. A., “Spectral theory of Kirkwood–Saltsberg equatioms in finite volume”, Theor. Math. Phys., 18 (1974) | DOI | MR

[6] Zagrebnov V. A., “On the solutions of correlation equations for classical continuous systems”, Physica. A, 199 (1981), 403–424 | DOI | MR

[7] Maslov V. P., Tariverdiev S. E., “Asimptotika uravneniya Kolmogorova–Fellera dlya sistemy bolshogo chisla chastits”, Itogi nauki i tekhniki. Teor. veroyatn., matem. statistika, teor. kibernetika, 19, VINITI AN SSSR, 1982, 85–125 | MR

[8] Maslov V. P., Chebotarev A. M., “O sluchainykh polyakh, otvechayuschikh tsepochkam Bogolyubova, Vlasova, Boltsmana”, TMF, 54:1 (1983), 78–88 | MR

[9] Lenard A., “States of classical statistical mechanical systems of infinitly many particles, I”, Arch. Rational Mech. Anal., 59 (1975), 219–239 | MR

[10] Nazin G. I., “Method of the generating functional”, J. Sov. Math., 1985, no. 31, 2859–2886 | DOI | Zbl

[11] Fichtner K.-H., Freudenberg W., “Characterization of states of infinite boson systems. I: On the construction of states of boson system”, Commun. Math. Phys., 137 (1991), 315–357 | DOI | MR | Zbl

[12] Kondratiev Yu. G., Kuna T., Oliveira M. J., “Analytic aspects of Poissonian white noise analysis”, Methods of Functional Analysis in Topology, 8:1 (2002), 15–48 | MR | Zbl

[13] Kondratiev Yu. G., Kuna T., “Correlation functionals for Hibbs measures and Ruelle bounds”, Methods of Functional Analysis in Topology, 9:1 (2003), 9–58 | MR | Zbl

[14] Kondratiev Yu. G., Kuna T., Kutoviy O., “On relations between a priory bounds for measures on configuration spaces”, Infinite Dimensional Analysis and Quantum Probability, 7:2 (2004), 195–213 | DOI | MR | Zbl

[15] Kondratiev Yu. G., Kuna T., Oliveira M. J., “On the relations between Poissonian white noise analysis and harmonic analysis on configuration space”, J. Funct. Anal., 213:1 (2004), 1–30 | DOI | MR | Zbl

[16] Berezanskii Yu. M., Kondratiev Yu. G., Kuna T., Lytvinov E., “On a spectral representation for correlation measures in configuration space analysis”, Methods of Functional Analysis, 5:4 (1999), 87–100 | MR

[17] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1967

[18] Widder D. V., The Laplace Transform, Princeton Univ. Press, Princeton, 1941 | MR | Zbl

[19] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1976 | MR

[20] Mazet O., “A characterization of Markov property for semigroups with invariant measure”, Potential Analysis, 16 (2002), 279–287 | DOI | MR | Zbl

[21] Lindblad G., “On generators of quantum dynamical semigroups”, Commun. Math. Phys., 48 (1976), 119–130 | DOI | MR | Zbl