On the spectrum of the Schrödinger operator with large potential concentrated on a small set
Matematičeskie zametki, Tome 79 (2006) no. 5, pp. 787-790 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{MZM_2006_79_5_a16,
     author = {A. R. Bikmetov and R. R. Gadyl'shin},
     title = {On the spectrum of the {Schr\"odinger} operator with large potential concentrated on a~small set},
     journal = {Matemati\v{c}eskie zametki},
     pages = {787--790},
     year = {2006},
     volume = {79},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a16/}
}
TY  - JOUR
AU  - A. R. Bikmetov
AU  - R. R. Gadyl'shin
TI  - On the spectrum of the Schrödinger operator with large potential concentrated on a small set
JO  - Matematičeskie zametki
PY  - 2006
SP  - 787
EP  - 790
VL  - 79
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a16/
LA  - ru
ID  - MZM_2006_79_5_a16
ER  - 
%0 Journal Article
%A A. R. Bikmetov
%A R. R. Gadyl'shin
%T On the spectrum of the Schrödinger operator with large potential concentrated on a small set
%J Matematičeskie zametki
%D 2006
%P 787-790
%V 79
%N 5
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a16/
%G ru
%F MZM_2006_79_5_a16
A. R. Bikmetov; R. R. Gadyl'shin. On the spectrum of the Schrödinger operator with large potential concentrated on a small set. Matematičeskie zametki, Tome 79 (2006) no. 5, pp. 787-790. http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a16/

[1] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, MGU, M., 1990

[2] Oleinik O. A., Sanchez-Hubert J., Yosifian G. A., Bull. Sc. Math. Ser. 2, 115 (1991), 1–27 | Zbl

[3] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[4] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl

[5] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | MR

[6] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[7] Gadylshin R. R., TMF, 132 (2002), 97–104 | MR

[8] Landau L. D., Livshits E. M., Teoreticheskaya fizika. T. 3. Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1989

[9] Simon B., Ann. Phys., 97 (1976), 279–288 | DOI | Zbl

[10] Klaus M., Ann. Phys., 108 (1977), 288–300 | DOI | MR | Zbl

[11] Blankenbecler R., Goldberger M. L., Simon B., Ann. Phys., 108 (1977), 69–78 | DOI | MR

[12] Klaus M., Simon B., Ann. Phys., 130 (1980), 251–281 | DOI | MR | Zbl

[13] Pelinovskii D. E., Salem K., TMF, 122 (2000), 118–128 | MR

[14] Zhevandrov P., Merzon A., “Asymptotics of eigenfunctions in shallow potential wells and related problems”, Asymptotic Methods for Wave and Quantum Problems, AMS Translations. Ser. 2. Advances in the Mathematical Sciences, ed. M. V. Karasev, AMS, 2003, 235–284 | MR | Zbl

[15] Bentosela F., Cavalcanti R. M., Exner P., Zagrebanov V. A., J. Phys. A, 32 (1999), 3029–3039 | DOI | MR | Zbl

[16] Gadylshin R. R., TMF, 138 (2004), 41–54 | MR