Structural joining method for the solution of the model Lighthill equation with a~regular singular point
Matematičeskie zametki, Tome 79 (2006) no. 5, pp. 643-652.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the structural joining method, we construct a uniformly valid explicit asymptotics of the solution of a perturbed model Lighthill equation with a regular singular point.
@article{MZM_2006_79_5_a0,
     author = {K. Alymkulov and Zh. K. Zh\'e\'entaeva},
     title = {Structural joining method for the solution of the model {Lighthill} equation with a~regular singular point},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--652},
     publisher = {mathdoc},
     volume = {79},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a0/}
}
TY  - JOUR
AU  - K. Alymkulov
AU  - Zh. K. Zhééntaeva
TI  - Structural joining method for the solution of the model Lighthill equation with a~regular singular point
JO  - Matematičeskie zametki
PY  - 2006
SP  - 643
EP  - 652
VL  - 79
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a0/
LA  - ru
ID  - MZM_2006_79_5_a0
ER  - 
%0 Journal Article
%A K. Alymkulov
%A Zh. K. Zhééntaeva
%T Structural joining method for the solution of the model Lighthill equation with a~regular singular point
%J Matematičeskie zametki
%D 2006
%P 643-652
%V 79
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a0/
%G ru
%F MZM_2006_79_5_a0
K. Alymkulov; Zh. K. Zhééntaeva. Structural joining method for the solution of the model Lighthill equation with a~regular singular point. Matematičeskie zametki, Tome 79 (2006) no. 5, pp. 643-652. http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a0/

[1] Alymkulov K., Zheentaeva Zh. K., “O yavnom predstavlenii resheniya vozmuschennogo uravneniya Laitkhilla s regulyarnoi osobennostyu. Sluchai polyusa odin k trem nevozmuschennogo uravneniya v osoboi tochke”, Issled. po integro-differents. uravneniyam, no. 31, Ilim, Bishkek, 2002, 110–117

[2] Zheentaeva Zh. K., “O yavnom predstavlenii resheniya vozmuschennogo uravneniya Laitkhilla s regulyarnoi osobennostyu. Sluchai polyusa odin k dvum resheniya nevozmuschennogo uravneniya”, Issled. po integro-differents. uravneniyam, no. 31, Ilim, Bishkek, 2002, 118–124

[3] Alymkulov K., Zulpukarov A. Z., “Ravnomernaya asimptotika resheniya kraevoi zadachi singulyarno vozmuschennogo uravneniya so slaboi osobennostyu pri proizvodnoi poryadka $1/3$”, Issled. po integro-differents. uravneniyam, no. 31, Ilim, Bishkek, 2002, 105–109

[4] Koul Dzh., Metody vozmuschenii v prikladnoi matematike, Mir, M., 1972 | MR

[5] Van Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967 | Zbl

[6] Naife A., Metody vozmuschenii, Mir, M., 1976 | MR

[7] Lagerstrom P. A., Matched asymptotic expansions, New-York, 1988 | MR | Zbl

[8] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989

[9] Lighthill L. M., “A technique for rendering approximate solutions to physical problems uniformly valid”, Philos. Mag., 1949, no. 40, 1179–1201 | MR | Zbl

[10] Alymkulov K., Vozmuschennye differentsialnye uravneniya s osobymi tochkami i nekotorye problemy bifurkatsionnykh zadach, Ilim, Bishkek, 1992 | Zbl

[11] Alymkulov K., “Razvitie i obosnovanie metoda Laitkhilla dlya vozmuschennykh differentsialnykh uravnenii”, Izv. AN KirgizSSR, 1984, no. 1, 7–11 | MR

[12] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR