Generalized Fourier transform and its applications
Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 581-596

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the generalized Fourier transform treated as an operator on the dual of an arbitrary locally convex space. We give a definition of this operator and establish its basic properties. Special attention is paid to cases in which the range of the generalized Fourier transform coincides with a weighted space of entire functions. The results are applied to finding the orders and types of operators in various spaces.
@article{MZM_2006_79_4_a9,
     author = {S. V. Panyushkin},
     title = {Generalized {Fourier} transform and its applications},
     journal = {Matemati\v{c}eskie zametki},
     pages = {581--596},
     publisher = {mathdoc},
     volume = {79},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a9/}
}
TY  - JOUR
AU  - S. V. Panyushkin
TI  - Generalized Fourier transform and its applications
JO  - Matematičeskie zametki
PY  - 2006
SP  - 581
EP  - 596
VL  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a9/
LA  - ru
ID  - MZM_2006_79_4_a9
ER  - 
%0 Journal Article
%A S. V. Panyushkin
%T Generalized Fourier transform and its applications
%J Matematičeskie zametki
%D 2006
%P 581-596
%V 79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a9/
%G ru
%F MZM_2006_79_4_a9
S. V. Panyushkin. Generalized Fourier transform and its applications. Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 581-596. http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a9/