The Lappo--Danilevskii method and trivial intersections of radicals in lower central series terms for certain fundamental groups
Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 577-580.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, it is proved that the intersection of the radicals of nilpotent residues for the generalized pure braid group corresponding to an irreducible finite Coxeter group or an irreducible imprimitive finite complex reflection group is always trivial. The proof uses the solvability of the Riemann–Hilbert problem for analytic families of faithful linear representations by the Lappo–Danilevskii method. Generalized Burau representations are defined for the generalized braid groups corresponding to finite complex reflection groups whose Dynkin–Cohen graphs are trees. The Fuchsian connections for which the monodromy representations are equivalent to the restrictions of generalized Burau representations to pure braid groups are described. The question about the faithfulness of generalized Burau representations and their restrictions to pure braid groups is posed.
@article{MZM_2006_79_4_a8,
     author = {V. P. Leksin},
     title = {The {Lappo--Danilevskii} method and trivial intersections of radicals in lower central series terms for certain fundamental groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {577--580},
     publisher = {mathdoc},
     volume = {79},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a8/}
}
TY  - JOUR
AU  - V. P. Leksin
TI  - The Lappo--Danilevskii method and trivial intersections of radicals in lower central series terms for certain fundamental groups
JO  - Matematičeskie zametki
PY  - 2006
SP  - 577
EP  - 580
VL  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a8/
LA  - ru
ID  - MZM_2006_79_4_a8
ER  - 
%0 Journal Article
%A V. P. Leksin
%T The Lappo--Danilevskii method and trivial intersections of radicals in lower central series terms for certain fundamental groups
%J Matematičeskie zametki
%D 2006
%P 577-580
%V 79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a8/
%G ru
%F MZM_2006_79_4_a8
V. P. Leksin. The Lappo--Danilevskii method and trivial intersections of radicals in lower central series terms for certain fundamental groups. Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 577-580. http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a8/

[1] Leksin V. P., “O zadache Rimana–Gilberta dlya analiticheskikh semeistv predstavlenii”, Matem. zametki, 50:2 (1991), 89–97 | MR | Zbl

[2] Hain R., “On a generalization of Hilbert's 21st problem”, Ann. Sci. École Norm. Sup., 19 (1986), 609–627 | MR | Zbl

[3] Kohno T., “Holonomy Lie algebras, logarithmic connections and the lower central series of fundamental groups”, Contemp. Math., 90 (1989), 171–182 | MR | Zbl

[4] Broué M., Malle G., Rouquier R., “Complex reflection groups, braid groups, Hecke algebras”, J. Reine Angew. Math., 500 (1998), 127–190 | MR | Zbl

[5] Squier C. C., “Matrix representations of Artin groups”, Proc. Amer. Math. Soc., 103 (1988), 49–53 | DOI | MR | Zbl

[6] Cohen A. M., Wales D. B., “Linearity of Artin groups of finite type”, Israel J. Math., 101 (2002), 101–123 | DOI | MR | Zbl

[7] Kohno T., “Linear representations of braid groups and classical Yang–Baxter equations”, Contemp. Math., 78 (1988), 339–363 | MR | Zbl

[8] Falk M., Randell R., “The lower central series of a fiber-type arrangement”, Invent. Math., 82 (1985), 77–88 | DOI | MR | Zbl