Klein polyhedra and relative minima of lattices
Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 546-552
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that in $\mathbb R^3$, the relative minima of almost any lattice belong to the surface of the corresponding Klein polyhedron. We also prove, for almost any lattice in $\mathbb R^3$, that the set of relative minima with nonnegative coordinates coincides with the union of the set of extremal points of the Klein polyhedron and a set of special points belonging to the triangular faces of the Klein polyhedron.
@article{MZM_2006_79_4_a4,
author = {O. N. German},
title = {Klein polyhedra and relative minima of lattices},
journal = {Matemati\v{c}eskie zametki},
pages = {546--552},
publisher = {mathdoc},
volume = {79},
number = {4},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a4/}
}
O. N. German. Klein polyhedra and relative minima of lattices. Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 546-552. http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a4/