Klein polyhedra and relative minima of lattices
Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 546-552

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that in $\mathbb R^3$, the relative minima of almost any lattice belong to the surface of the corresponding Klein polyhedron. We also prove, for almost any lattice in $\mathbb R^3$, that the set of relative minima with nonnegative coordinates coincides with the union of the set of extremal points of the Klein polyhedron and a set of special points belonging to the triangular faces of the Klein polyhedron.
@article{MZM_2006_79_4_a4,
     author = {O. N. German},
     title = {Klein polyhedra and relative minima of lattices},
     journal = {Matemati\v{c}eskie zametki},
     pages = {546--552},
     publisher = {mathdoc},
     volume = {79},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a4/}
}
TY  - JOUR
AU  - O. N. German
TI  - Klein polyhedra and relative minima of lattices
JO  - Matematičeskie zametki
PY  - 2006
SP  - 546
EP  - 552
VL  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a4/
LA  - ru
ID  - MZM_2006_79_4_a4
ER  - 
%0 Journal Article
%A O. N. German
%T Klein polyhedra and relative minima of lattices
%J Matematičeskie zametki
%D 2006
%P 546-552
%V 79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a4/
%G ru
%F MZM_2006_79_4_a4
O. N. German. Klein polyhedra and relative minima of lattices. Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 546-552. http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a4/