On recovering Sturm--Liouville operators on graphs
Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 619-630.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sturm–Liouville differential operators on compact graphs are studied. We establish properties of the spectral characteristics and investigate three inverse problems of recovering the operator from the so-called Weyl functions, from discrete spectral data, and from a system of spectra. For these inverse problems, we prove uniqueness theorems and obtain procedures for constructing the solutions by the method of spectral mappings.
@article{MZM_2006_79_4_a13,
     author = {V. A. Yurko},
     title = {On recovering {Sturm--Liouville} operators on graphs},
     journal = {Matemati\v{c}eskie zametki},
     pages = {619--630},
     publisher = {mathdoc},
     volume = {79},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a13/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - On recovering Sturm--Liouville operators on graphs
JO  - Matematičeskie zametki
PY  - 2006
SP  - 619
EP  - 630
VL  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a13/
LA  - ru
ID  - MZM_2006_79_4_a13
ER  - 
%0 Journal Article
%A V. A. Yurko
%T On recovering Sturm--Liouville operators on graphs
%J Matematičeskie zametki
%D 2006
%P 619-630
%V 79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a13/
%G ru
%F MZM_2006_79_4_a13
V. A. Yurko. On recovering Sturm--Liouville operators on graphs. Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 619-630. http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a13/

[1] Pokornyi Yu. V., Penkin O. M., “O kraevoi zadache na grafe”, Differents. uravneniya, 24 (1988), 701–703 | MR | Zbl

[2] Pokornyi Yu. V., Borovskikh A. V., Differentsialnye uravneniya na setyakh (geometricheskikh grafakh), Itogi nauki i tekhn. Sovremennaya matematika i ee prilozheniya, 106, VINITI, M., 2002

[3] Pokornyi Yu. V., Pryadiev V. L., “Nekotorye problemy kachestvennoi teorii Shturma–Liuvillya na prostranstvennykh setyakh”, UMN, 59:3 (2004), 115–150 | MR | Zbl

[4] Gerasimenko N. I., “Obratnaya zadacha rasseyaniya na nekompaktnom grafe”, TMF, 75:2 (1988), 187–200 | MR

[5] Carlson R., “Inverse eigenvalue problems on directed graphs”, Trans. Amer. Math. Soc., 351:10 (1999), 4069–4088 | DOI | MR | Zbl

[6] Pivovarchik V. N., “Inverse problem for the Sturm–Liouville equation on a simple graph”, SIAM J. Math. Anal., 32:4 (2000), 801–819 | DOI | MR | Zbl

[7] Kurasov P., Stenberg F., “On the inverse scattering problem on branching graphs”, J. Phys. A Math. Gen., 35 (2002), 101–121 | DOI | MR | Zbl

[8] Belishev M. I., “Boundary spectral inverse problem on a class of graphs (trees) by the BC method”, Inverse Problems, 20 (2004), 647–672 | DOI | MR | Zbl

[9] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[10] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR

[11] Freiling G., Yurko V. A., Inverse Sturm–Liouville Problems and their Applications, Nova Science Publ., New York, 2001 | MR | Zbl

[12] Yurko V. A., Method of Spectral Mappings in the Inverse Problem Theory, Inverse and III-posed Problems Series, VSP, Utrecht, 2002 | MR | Zbl

[13] Yurko V. A., Obratnye spektralnye zadachi i ikh prilozheniya, Izd-vo Saratovskogo pedinstituta, Saratov, 2001 | MR

[14] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[15] Levitan B. M., Sargsyan I. S., Vvedenie v spektralnuyu teoriyu, Nauka, M., 1970 | MR | Zbl