On recovering Sturm–Liouville operators on graphs
Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 619-630 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sturm–Liouville differential operators on compact graphs are studied. We establish properties of the spectral characteristics and investigate three inverse problems of recovering the operator from the so-called Weyl functions, from discrete spectral data, and from a system of spectra. For these inverse problems, we prove uniqueness theorems and obtain procedures for constructing the solutions by the method of spectral mappings.
@article{MZM_2006_79_4_a13,
     author = {V. A. Yurko},
     title = {On recovering {Sturm{\textendash}Liouville} operators on graphs},
     journal = {Matemati\v{c}eskie zametki},
     pages = {619--630},
     year = {2006},
     volume = {79},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a13/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - On recovering Sturm–Liouville operators on graphs
JO  - Matematičeskie zametki
PY  - 2006
SP  - 619
EP  - 630
VL  - 79
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a13/
LA  - ru
ID  - MZM_2006_79_4_a13
ER  - 
%0 Journal Article
%A V. A. Yurko
%T On recovering Sturm–Liouville operators on graphs
%J Matematičeskie zametki
%D 2006
%P 619-630
%V 79
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a13/
%G ru
%F MZM_2006_79_4_a13
V. A. Yurko. On recovering Sturm–Liouville operators on graphs. Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 619-630. http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a13/

[1] Pokornyi Yu. V., Penkin O. M., “O kraevoi zadache na grafe”, Differents. uravneniya, 24 (1988), 701–703 | MR | Zbl

[2] Pokornyi Yu. V., Borovskikh A. V., Differentsialnye uravneniya na setyakh (geometricheskikh grafakh), Itogi nauki i tekhn. Sovremennaya matematika i ee prilozheniya, 106, VINITI, M., 2002

[3] Pokornyi Yu. V., Pryadiev V. L., “Nekotorye problemy kachestvennoi teorii Shturma–Liuvillya na prostranstvennykh setyakh”, UMN, 59:3 (2004), 115–150 | MR | Zbl

[4] Gerasimenko N. I., “Obratnaya zadacha rasseyaniya na nekompaktnom grafe”, TMF, 75:2 (1988), 187–200 | MR

[5] Carlson R., “Inverse eigenvalue problems on directed graphs”, Trans. Amer. Math. Soc., 351:10 (1999), 4069–4088 | DOI | MR | Zbl

[6] Pivovarchik V. N., “Inverse problem for the Sturm–Liouville equation on a simple graph”, SIAM J. Math. Anal., 32:4 (2000), 801–819 | DOI | MR | Zbl

[7] Kurasov P., Stenberg F., “On the inverse scattering problem on branching graphs”, J. Phys. A Math. Gen., 35 (2002), 101–121 | DOI | MR | Zbl

[8] Belishev M. I., “Boundary spectral inverse problem on a class of graphs (trees) by the BC method”, Inverse Problems, 20 (2004), 647–672 | DOI | MR | Zbl

[9] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[10] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR

[11] Freiling G., Yurko V. A., Inverse Sturm–Liouville Problems and their Applications, Nova Science Publ., New York, 2001 | MR | Zbl

[12] Yurko V. A., Method of Spectral Mappings in the Inverse Problem Theory, Inverse and III-posed Problems Series, VSP, Utrecht, 2002 | MR | Zbl

[13] Yurko V. A., Obratnye spektralnye zadachi i ikh prilozheniya, Izd-vo Saratovskogo pedinstituta, Saratov, 2001 | MR

[14] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[15] Levitan B. M., Sargsyan I. S., Vvedenie v spektralnuyu teoriyu, Nauka, M., 1970 | MR | Zbl