Irrationality of the sums of zeta values
Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 607-618.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we establish a lower bound for the dimension of the vector spaces spanned over $\mathbb Q$ by 1 and the sums of the values of the Riemann zeta function at even and odd points. As a consequence, we obtain numerical results on the irrationality and linear independence of the sums of zeta values at even and odd points from a given interval of the positive integers.
@article{MZM_2006_79_4_a12,
     author = {T. G. Hessami Pilehrood and Kh. Hessami Pilehrood},
     title = {Irrationality of the sums of zeta values},
     journal = {Matemati\v{c}eskie zametki},
     pages = {607--618},
     publisher = {mathdoc},
     volume = {79},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a12/}
}
TY  - JOUR
AU  - T. G. Hessami Pilehrood
AU  - Kh. Hessami Pilehrood
TI  - Irrationality of the sums of zeta values
JO  - Matematičeskie zametki
PY  - 2006
SP  - 607
EP  - 618
VL  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a12/
LA  - ru
ID  - MZM_2006_79_4_a12
ER  - 
%0 Journal Article
%A T. G. Hessami Pilehrood
%A Kh. Hessami Pilehrood
%T Irrationality of the sums of zeta values
%J Matematičeskie zametki
%D 2006
%P 607-618
%V 79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a12/
%G ru
%F MZM_2006_79_4_a12
T. G. Hessami Pilehrood; Kh. Hessami Pilehrood. Irrationality of the sums of zeta values. Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 607-618. http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a12/

[1] Nikishin E. M., “Ob irratsionalnosti znachenii funktsii $F(x,s)$”, Matem. sb., 109 (151):3 (7) (1979), 410–417 | MR | Zbl

[2] Chudnovsky G., “Padé approximations to the generalized hypergeometric functions, I”, J. Math. Pures Appl., 58 (1979), 445–476 | MR | Zbl

[3] Gutnik L. A., “O lineinoi nezavisimosti nad $\mathbb Q$ dilogarifmov v ratsionalnykh tochkakh”, UMN, 37:5 (1982), 179–180 | MR | Zbl

[4] Hata M., “On the linear independence of the values of polylogarithmic functions”, J. Math. Pures Appl., 69 (1990), 99–125 | MR

[5] Apéry R., “Irrationalité de $\zeta(2)$ et $\zeta(3)$”, Astérisque, 61, 1979, 11–13 | Zbl

[6] Nesterenko Yu. V., “O lineinoi nezavisimosti chisel”, Vestn. MGU. Ser. 1. Matem., mekh., 1985, no. 1, 46–54 | MR

[7] Rivoal T., Propriétés diophantiennes des valeurs de la fonction zêta de Riemann aux entiers impairs, Thèse de Doctorat, Univ. de Caen, Caen, 2001

[8] Fischler S., Rivoal T., “Approximants de Padé et séries hypergéométriques équilibrées”, J. Math. Pures Appl., 82:10 (2003), 1369–1394 | MR | Zbl

[9] Rivoal T., “La fonction zêta de Riemann prend une infinité de valeurs irrationalites aux entiers impairs”, C. R. Acad. Sci. Paris Sér. I Math., 331:4 (2000), 267–270 | MR | Zbl

[10] Zudilin V. V., “Odno iz chisel $\zeta(5)$, $\zeta(7)$, $\zeta(9)$, $\zeta(11)$ irratsionalno”, UMN, 56:4 (2001), 149–150 | MR | Zbl

[11] Rivoal T., Zudilin W., “Diophantine properties of numbers related to Catalan's constant”, Math. Ann., 326:4 (2003), 705–721 | DOI | MR | Zbl

[12] Gutnik L. A., “Ob irratsionalnosti nekotorykh velichin, soderzhaschikh $\zeta(3)$”, UMN, 34:3 (1979), 190 ; Acta Arith., 42:3 (1983), 255–264 | MR | Zbl | MR | Zbl

[13] Zudilin V. V., “Ob irratsionalnosti znachenii dzeta-funktsii Rimana”, Izv. RAN. Ser. matem., 66:3 (2002), 49–102 | MR | Zbl

[14] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Nauka, M., 1965

[15] Nesterenko Yu. V., “Nekotorye zamechaniya o $\zeta(3)$”, Matem. zametki, 59:6 (1996), 865–880 | MR | Zbl

[16] Ball K., Rivoal T., “Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs”, Invent. Math., 146:1 (2001), 193–207 | DOI | MR | Zbl