A discrete model of a large polling system
Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 597-600
Cet article a éte moissonné depuis la source Math-Net.Ru
For a network with Poisson incoming flow of customers (particles) and unit time of the motion of servers (annihilators), we obtain the limit distribution of the number of customers at the node for a fixed general number of nodes.
@article{MZM_2006_79_4_a10,
author = {A. A. Sergeev},
title = {A~discrete model of a~large polling system},
journal = {Matemati\v{c}eskie zametki},
pages = {597--600},
year = {2006},
volume = {79},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a10/}
}
A. A. Sergeev. A discrete model of a large polling system. Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 597-600. http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a10/
[1] Borovkov A. A., Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972
[2] Afanaseva L. G., Bulinskaya E. V., Sluchainye protsessy v teorii massovogo obsluzhivaniya i upravleniya zapasami, Izd-vo MGU, M., 1980