A discrete model of a large polling system
Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 597-600 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a network with Poisson incoming flow of customers (particles) and unit time of the motion of servers (annihilators), we obtain the limit distribution of the number of customers at the node for a fixed general number of nodes.
@article{MZM_2006_79_4_a10,
     author = {A. A. Sergeev},
     title = {A~discrete model of a~large polling system},
     journal = {Matemati\v{c}eskie zametki},
     pages = {597--600},
     year = {2006},
     volume = {79},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a10/}
}
TY  - JOUR
AU  - A. A. Sergeev
TI  - A discrete model of a large polling system
JO  - Matematičeskie zametki
PY  - 2006
SP  - 597
EP  - 600
VL  - 79
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a10/
LA  - ru
ID  - MZM_2006_79_4_a10
ER  - 
%0 Journal Article
%A A. A. Sergeev
%T A discrete model of a large polling system
%J Matematičeskie zametki
%D 2006
%P 597-600
%V 79
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a10/
%G ru
%F MZM_2006_79_4_a10
A. A. Sergeev. A discrete model of a large polling system. Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 597-600. http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a10/

[1] Borovkov A. A., Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972

[2] Afanaseva L. G., Bulinskaya E. V., Sluchainye protsessy v teorii massovogo obsluzhivaniya i upravleniya zapasami, Izd-vo MGU, M., 1980