Second derivatives of convex functions in the sense of A.\,D.~Aleksandrov on infinite-dimensional spaces with measure
Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 488-504.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider convex functions on infinite-dimensional spaces equipped with measures. Our main results give some estimates of the first and second derivatives of a convex function, where second derivatives are considered from two different points of view: as point functions and as measures.
@article{MZM_2006_79_4_a1,
     author = {V. I. Bogachev and B. Goldys},
     title = {Second derivatives of convex functions in the sense of {A.\,D.~Aleksandrov} on infinite-dimensional spaces with measure},
     journal = {Matemati\v{c}eskie zametki},
     pages = {488--504},
     publisher = {mathdoc},
     volume = {79},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a1/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - B. Goldys
TI  - Second derivatives of convex functions in the sense of A.\,D.~Aleksandrov on infinite-dimensional spaces with measure
JO  - Matematičeskie zametki
PY  - 2006
SP  - 488
EP  - 504
VL  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a1/
LA  - ru
ID  - MZM_2006_79_4_a1
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A B. Goldys
%T Second derivatives of convex functions in the sense of A.\,D.~Aleksandrov on infinite-dimensional spaces with measure
%J Matematičeskie zametki
%D 2006
%P 488-504
%V 79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a1/
%G ru
%F MZM_2006_79_4_a1
V. I. Bogachev; B. Goldys. Second derivatives of convex functions in the sense of A.\,D.~Aleksandrov on infinite-dimensional spaces with measure. Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 488-504. http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a1/

[1] Borwein J. M., Noll D., “Second order differentiability of convex functions in Banach spaces”, Trans. Amer. Math. Soc., 342 (1994), 43–82 | DOI | MR

[2] Matoušek J., Matoušková E., “A highly non-smooth norm on Hilbert space”, Israel J. Math., 112 (1999), 1–27 | DOI | MR | Zbl

[3] Matoušková E., Zajiček L., “Second order differentiability and Lipschitz smooth points of convex functionals”, Czech. Math. J., 48 (1998), 617–640 | DOI | MR | Zbl

[4] Aleksandrov A. D., “Suschestvovanie pochti vsyudu vtorogo differentsiala vypukloi funktsii i nekotorye svyazannye s nim svoistva vypuklykh poverkhnostei”, Uchenye zapiski Leningradskogo univ-ta, 37:6 (1939), 3–35 | Zbl

[5] Busemann H., Feller W., “Krümmungseigenschaften konvexer Flächen”, Acta Math., 66 (1935), 1–47 | DOI

[6] Evans L. K., Gariepi R. F., Teoriya mery i tonkie svoistva funktsii, Nauch. kniga, Novosibirsk, 2002

[7] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR

[8] Krylov N. V., Nelineinye ellipticheskie i parabolicheskie uravneniya vtorogo poryadka, Nauka, M., 1985

[9] Bogachev V. I., Mayer-Wolf E., “Some remarks on Rademacher's theorem in infinite dimensions”, Potential Anal., 5:1 (1996), 23–30 | DOI | MR | Zbl

[10] Bogachev V. I., Gaussovskie mery, Fizmatlit, M., 1997 | MR | Zbl

[11] Bogachev V. I., “Differentiable measures and the Malliavin calculus”, J. Math. Sci. (New York), 87 (1997), 3577–3731 | DOI | MR | Zbl

[12] Feyel D., Üstünel A. S., “The notion of convexity and concavity on Wiener space”, J. Funct. Anal., 176 (2000), 400–428 | DOI | MR | Zbl

[13] Üstünel A. S., Zakai M., Transformation of Measure on Wiener Space, Springer-Verlag, Berlin, 2000 | MR

[14] Bogachev V. I., Osnovy teorii mery, T. 1, 2, RKhD, M.–Izhevsk, 2003

[15] Bogachev V. I., Smolyanov O. G., “Analiticheskie svoistva beskonechnomernykh raspredelenii”, UMN, 45:3 (1990), 3–83 | MR | Zbl

[16] Krugova E. P., “Ob integriruemosti logarifmicheskikh proizvodnykh mer”, Matem. zametki, 53:5 (1993), 76–86 | MR | Zbl

[17] Bogachev V. I., Kolesnikov A. V., On the Monge–Ampère equation in infinite dimensions, BiBoS Preprint No. 05-01-175, Universität Bielefeld, 2005 | MR