Transfer maps for triples of manifolds
Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 420-433.

Voir la notice de l'article provenant de la source Math-Net.Ru

Transfer maps are closely related to the problem of splitting a homotopy equivalence along a submanifold and with the problem of surgery on a pair of manifolds. In the present paper, we describe relations between various transfer maps for a triple of embedded manifolds.
@article{MZM_2006_79_3_a8,
     author = {Yu. V. Muranov and R. Himenez},
     title = {Transfer maps for triples of manifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {420--433},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a8/}
}
TY  - JOUR
AU  - Yu. V. Muranov
AU  - R. Himenez
TI  - Transfer maps for triples of manifolds
JO  - Matematičeskie zametki
PY  - 2006
SP  - 420
EP  - 433
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a8/
LA  - ru
ID  - MZM_2006_79_3_a8
ER  - 
%0 Journal Article
%A Yu. V. Muranov
%A R. Himenez
%T Transfer maps for triples of manifolds
%J Matematičeskie zametki
%D 2006
%P 420-433
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a8/
%G ru
%F MZM_2006_79_3_a8
Yu. V. Muranov; R. Himenez. Transfer maps for triples of manifolds. Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 420-433. http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a8/

[1] Wall C. T. C., Surgery on Compact Manifolds, 2nd edition, ed. A. A. Ranicki, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[2] Ranicki A. A., Exact Sequences in the Algebraic Theory of Surgery, Math. Notes, Princeton Univ. Press, Princeton, 1981 | Zbl

[3] Lük W., Ranicki A. A., “Surgery obstructions of fibre bundles”, J. Pure Appl. Algebra, 81 (1992), 139–189 | DOI | MR

[4] Lük W., Ranicki A. A., “Surgery transfer”, Lecture Notes in Math., 1361, 1988, 167–246 | MR

[5] Ranicki A. A., “The total surgery obstruction”, Lecture Notes in Math., 763, 1979, 275–316 | MR | Zbl

[6] Browder W., Livesay G. R., “Fixed point free involutions on homotopy spheres”, Bull. Amer. Math. Soc., 73 (1967), 242–245 | DOI | MR | Zbl

[7] Cappell S. E., Shaneson J. L., “Pseudo-free actions”, Lecture Notes in Math., 763, 1979, 395–447 | MR | Zbl

[8] Hambleton I., “Projective surgery obstructions on closed manifolds”, Lecture Notes in Math., 967, 1982, 101–131 | Zbl

[9] Kharshiladze A. F., “Perestroika mnogoobrazii s konechnymi fundamentalnymi gruppami”, UMN, 42 (1987), 55–85 | MR | Zbl

[10] Khemblton I., Kharshiladze A. F., “Spektralnaya posledovatelnost v teorii perestroek”, Matem. sb., 183 (1992), 3–14 | MR

[11] Muranov Yu. V., “Zadacha rasschepleniya”, Tr. MIAN, 212, Nauka, M., 1996, 123–146 | MR

[12] Hambleton I., Pedersen E., Topological equivalences of linear representations for cyclic groups, Preprint, MPIM, Bonn, 1997

[13] Muranov Yu. V., Repovsh D., Spaggiari F., “Perestroika troek mnogoobrazii”, Matem. sb., 194:8 (2003), 139–160 | MR | Zbl

[14] Akhmetev P. M., Muranov Yu. V., “Prepyatstviya k rasschepleniyu mnogoobrazii s beskonechnoi fundamentalnoi gruppoi”, Matem. zametki, 60:2 (1996), 163–175 | MR

[15] Muranov Yu. V., “Gruppy prepyatstvii k rasschepleniyu i kvadratichnye rasshireniya antistruktur”, Izv. RAN. Ser. matem., 59:6 (1995), 107–132 | MR | Zbl

[16] Maleshich I., Muranov Yu. V., Repovsh D., “Gruppy prepyatstvii k rasschepleniyu v korazmernosti $2$”, Matem. zametki, 69:1 (2001), 52–73 | MR | Zbl

[17] Hambleton I., Milgram R. J., Taylor L., Williams B., “Surgery with finite fundamental group”, Proc. London. Math. Soc., 56 (1988), 349–379 | DOI | MR | Zbl

[18] Milgram R. J., “Surgery with finite fundamental group. I: The obstructions”, Pacific J. Math., 151:1 (1991), 65–115 | MR | Zbl

[19] Milgram R. J., “Surgery with finite fundamental group. II: The oozing conjecture”, Pacific J. Math., 151:1 (1991), 117–150 | MR | Zbl

[20] Rourke C. P., Sullivan D., “On the Kervaire obstruction”, Ann. of Math., 94 (1971), 361–388 | DOI | MR

[21] Kharshiladze A. F., “Iterirovannye invarianty Braudera–Livsi i uzing problema”, Matem. zametki, 41:4 (1987), 557–563 | MR | Zbl

[22] Akhmetev P. M., “$K_2$ dlya prosteishikh tselochislennykh gruppovykh kolets i topologicheskie prilozheniya”, Matem. sb., 194 (2003), 23–30 | MR

[23] Hambleton I., Ranicki A., Taylor L., “Round $L$-theory”, J. Pure Appl. Algebra, 47 (1987), 131–154 | DOI | MR | Zbl

[24] Switzer R., Algebraic Topology—Homotopy and Homology, Grund. Math. Wissen., 212, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | MR | Zbl

[25] Cohen M. M., A Course in Simple Homotopy Theory, Springer-Verlag, New York, 1973 | MR