How to generalize known results on equations over groups
Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 409-419.

Voir la notice de l'article provenant de la source Math-Net.Ru

Known facts about the solvability of equations over groups are considered from a more general point of view. The theorem about the solvability of unimodular equations over torsion-free groups is generalized. A special case of the generalization is a multivariable version of this theorem. For unimodular equations over torsion-free groups, an analog of Magnus' Freiheitssatz is proved, which asserts the existence of a solution exhibiting good behavior with respect to the free factors of the initial group.
@article{MZM_2006_79_3_a7,
     author = {A. A. Klyachko},
     title = {How to generalize known results on equations over groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {409--419},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a7/}
}
TY  - JOUR
AU  - A. A. Klyachko
TI  - How to generalize known results on equations over groups
JO  - Matematičeskie zametki
PY  - 2006
SP  - 409
EP  - 419
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a7/
LA  - ru
ID  - MZM_2006_79_3_a7
ER  - 
%0 Journal Article
%A A. A. Klyachko
%T How to generalize known results on equations over groups
%J Matematičeskie zametki
%D 2006
%P 409-419
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a7/
%G ru
%F MZM_2006_79_3_a7
A. A. Klyachko. How to generalize known results on equations over groups. Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 409-419. http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a7/

[1] Brodskii S. D., “Uravneniya nad gruppami i gruppy s odnim opredelyayuschim sootnosheniem”, Sib. matem. zh., 25:2 (1984), 84–103 | MR | Zbl

[2] Klyachko Ant. A., Prischepov M. I., “Metod spuska dlya uravnenii nad gruppami”, Vestn. MGU. Ser. 1. Matem., mekh., 1995, no. 4, 90–93 | Zbl

[3] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980

[4] Clifford A., “Nonamenable type $K$ equations over groups”, Glasgow Math. J., 45 (2003), 389–400 | DOI | MR | Zbl

[5] Clifford A., Goldstein R. Z., “Equations with torsion-free coefficients”, Proc. Edinburgh Math. Soc., 43 (2000), 295–307 | DOI | MR | Zbl

[6] Cohen M. M., Rourke C., “The surjectivity problem for one-generator, one-relator extensions of torsion-free groups”, Geometry Topology, 5 (2001), 127–142 | DOI | MR | Zbl

[7] Edjvet M., Howie J., “The solution of length four equations over groups”, Trans. Amer. Math. Soc., 326 (1991), 345–369 | DOI | MR | Zbl

[8] Fenn R., Rourke C., “Klyachko's methods and the solution of equations over torsion-free groups”, L'Enseignment Math., 42 (1996), 49–74 | MR | Zbl

[9] Gerstenhaber M., Rothaus O. S., “The solution of sets of equations in groups”, Proc. Nat. Acad. Sci. USA, 48 (1962), 1531–1533 | DOI | MR | Zbl

[10] Howie J., “On pairs of 2-complexes and systems of equations over groups”, J. Reine Angew Math., 324 (1981), 165–174 | MR | Zbl

[11] Ivanov S. V., Klyachko Ant. A., “Solving equations of length at most six over torsion-free groups”, J. Group Theory, 3 (2000), 329–337 | DOI | MR | Zbl

[12] Klyachko Ant. A., “A funny property of a sphere and equations over groups”, Comm. Algebra, 21 (1993), 2555–2575 | DOI | MR | Zbl

[13] Levin F., “Solutions of equations over groups”, Bull. Amer. Math. Soc., 68 (1962), 603–604 | DOI | MR | Zbl

[14] Lyndon R. C., “Equations in groups”, Bol. Soc. Brasil. Math., 11:1 (1980), 79–102 | DOI | MR | Zbl

[15] Stallings J. R., “A graph-theoretic lemma and group embeddings”, Combinatorial group theory and topology, Ann. Math. Stud., 111, eds. S. M. Gersten, J. R. Stallings, 1987, 145–155 | MR | Zbl

[16] Promyslow S. D., “A simple example of a torsion free nonunique product group”, Bull. London Math. Soc., 20 (1988), 302–304 | DOI | MR

[17] Rips E., Segev Y., “Torsion free groups without unique product property”, J. Algebra, 108 (1987), 116–126 | DOI | MR | Zbl

[18] Strojnowski A., “A note on u.p. groups”, Comm. Algebra, 8 (1980), 231–234 | DOI | MR | Zbl

[19] Magnus W., “Über diskontinuierliche Gruppen mit einer definierenden Relation (Der Freiheitssatz)”, J. Reine Angew Math., 163 (1930), 141–165