Non-singly-generated multiply $\omega$-fan fitting classes of finite groups
Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 396-408.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we study algebraic lattices of Fitting classes and describe non-singly-generated Fitting classes all of whose proper Fitting subclasses are singly generated. All groups under consideration are assumed finite.
@article{MZM_2006_79_3_a6,
     author = {O. V. Kamozina},
     title = {Non-singly-generated multiply $\omega$-fan fitting classes of finite groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {396--408},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a6/}
}
TY  - JOUR
AU  - O. V. Kamozina
TI  - Non-singly-generated multiply $\omega$-fan fitting classes of finite groups
JO  - Matematičeskie zametki
PY  - 2006
SP  - 396
EP  - 408
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a6/
LA  - ru
ID  - MZM_2006_79_3_a6
ER  - 
%0 Journal Article
%A O. V. Kamozina
%T Non-singly-generated multiply $\omega$-fan fitting classes of finite groups
%J Matematičeskie zametki
%D 2006
%P 396-408
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a6/
%G ru
%F MZM_2006_79_3_a6
O. V. Kamozina. Non-singly-generated multiply $\omega$-fan fitting classes of finite groups. Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 396-408. http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a6/

[1] Skiba A. N., Algebra formatsii, Belaruskaya navuka, Minsk, 1997 | MR | Zbl

[2] Skiba A. N., “O lokalnykh formatsiyakh dliny 5”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1986, 135–149 | MR

[3] Vorobev N. N., Skiba A. N., Distributivnost reshetki razreshimykh totalno lokalnykh klassov Fittinga, Preprint No. 82, GGU, Gomel, 1999

[4] Skiba A. N., “O neodnoporozhdennykh $S$-zamknutykh lokalnykh formatsiyakh”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1986, 135–149 | MR

[5] Safonov V. G., “Ob odnom voprose teorii totalno lokalnykh formatsii konechnykh grupp”, Algebra i logika, 42:6 (2003), 727–736 | Zbl

[6] Vedernikov V. A., Sorokina M. M., “$\omega$-veernye formatsii i klassy Fittinga konechnykh grupp”, Matem. zametki, 71:1 (2002), 43–60 | MR | Zbl

[7] Vedernikov V. A., “O novykh tipakh $\omega$-veernykh klassov Fittinga konechnykh grupp”, Ukr. matem. zh., 54:7 (2002), 897–906 | MR | Zbl

[8] Doerk K., Hawkes T., Finite Soluble Groupes, Walter de Gruyter, Berlin–New York, 1992 | MR

[9] Shemetkov L. A., Skiba A. N., Formatsii algebraicheskikh sistem, Nauka, M., 1989 | MR

[10] Vorobev N. T., “O radikalnykh klassakh konechnykh grupp s usloviem Loketta”, Matem. zametki, 43:2 (1988), 161–168 | MR

[11] Syromolotova O. V., “O proizvedenii kratno $\omega$-lokalnykh klassov Fittinga”, Matem. zametki, 75:2 (2004), 269–276 | MR | Zbl

[12] Vedernikov V. A., “Maximal satellites of $\Omega$-foliated formations and Fitting classes”, Proc. Steklov Inst. Math., 2001, no. 2, 217–233 | MR

[13] Safonov V. G., “K teorii totalno lokalnykh klassov Fittinga”, Mezhd. konf. “Teoriya kl. grupp i dr. alg. sistem”, Posv. 80-letiyu prof. V. Gashyutsa. Tez. dokl., Gomel, 2000, 46–47