On the accumulation of eigenvalues of operator pencils connected with the problem of vibrations in a~viscoelastic rod
Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 369-383.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the problem of the boundary accumulation of a discrete spectrum, which is essential for a boundary-value problem of fourth order arising in the theory of small transverse vibrations in an inhomogeneous viscoelastic rod (a Kelvin–Voigt body). We establish conditions for such an accumulation and its asymptotics, which are expressed in terms of the coefficients defining the problem posed by the differential expression. The results obtained are illustrated by numerical computation data.
@article{MZM_2006_79_3_a4,
     author = {A. A. Vladimirov},
     title = {On the accumulation of eigenvalues of operator pencils connected with the problem of vibrations in a~viscoelastic rod},
     journal = {Matemati\v{c}eskie zametki},
     pages = {369--383},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a4/}
}
TY  - JOUR
AU  - A. A. Vladimirov
TI  - On the accumulation of eigenvalues of operator pencils connected with the problem of vibrations in a~viscoelastic rod
JO  - Matematičeskie zametki
PY  - 2006
SP  - 369
EP  - 383
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a4/
LA  - ru
ID  - MZM_2006_79_3_a4
ER  - 
%0 Journal Article
%A A. A. Vladimirov
%T On the accumulation of eigenvalues of operator pencils connected with the problem of vibrations in a~viscoelastic rod
%J Matematičeskie zametki
%D 2006
%P 369-383
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a4/
%G ru
%F MZM_2006_79_3_a4
A. A. Vladimirov. On the accumulation of eigenvalues of operator pencils connected with the problem of vibrations in a~viscoelastic rod. Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 369-383. http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a4/

[1] Pivovarchik V. N., “Kraevaya zadacha, svyazannaya s kolebaniyami sterzhnya s vnutrennim i vneshnim treniem”, Vest. MGU. Ser. 1. Matem., mekh., 1987, no. 3, 68–71 | MR

[2] Lancaster P., Shkalikov A., “Damped vibration of beams and related spectral problems”, Canad. Appl. Math. Quat., 2:1 (1994), 45–90 | MR | Zbl

[3] Griniv R. O., Shkalikov A. A., “O puchke operatorov, voznikayuschem v zadache o kolebaniyakh sterzhnya s vnutrennim treniem”, Matem. zametki, 56:2 (1994), 114–131 | MR | Zbl

[4] Vladimirov A. A., “O nakoplenii sobstvennykh znachenii differentsialnykh operator-funktsii”, UMN, 57:1 (2002), 151–152 | Zbl

[5] Mennicken R., Schmid H., Shkalikov A. A., “On the eigenvalue accumulation of Sturm–Liouville problem depending nonlinearly on the spectral parameter”, Math. Nachr., 189 (1998), 157–170 | DOI | MR | Zbl

[6] Vladimirov A. A., Griniv R. O., Shkalikov A. A., “Spektralnyi analiz periodicheskikh differentsialnykh matrits smeshannogo poryadka”, Tr. MMO, 63, URSS, M., 2002, 45–86 | Zbl

[7] Rofe-Beketov F. S., Kholkin A. M., Spektralnyi analiz differentsialnykh operatorov. Svyaz spektralnykh i ostsillyatsionnykh svoistv, Mariupol, 2001

[8] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR