A~generalization of the Beurling--Lax theorem
Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 362-368

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain conditions for the completeness of the system $\{G(z)e^{\tau z},\tau\leqslant0\}$ in the space $H^2_\sigma(\mathbb C_+)$, $0\sigma+\infty$, of functions analytic in the right-hand half-plane for which $$ \|f\|:=\sup_{-\pi/2\varphi\pi/2}\biggl\{\,\int_0^{+\infty}|f(re^{i\varphi})|^2e^{-2r\sigma|\sin\varphi|}\,dr\biggr\}^{1/2}+\infty. $$
@article{MZM_2006_79_3_a3,
     author = {B. V. Vinnitskii and V. N. Dil'nyi},
     title = {A~generalization of the {Beurling--Lax} theorem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {362--368},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a3/}
}
TY  - JOUR
AU  - B. V. Vinnitskii
AU  - V. N. Dil'nyi
TI  - A~generalization of the Beurling--Lax theorem
JO  - Matematičeskie zametki
PY  - 2006
SP  - 362
EP  - 368
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a3/
LA  - ru
ID  - MZM_2006_79_3_a3
ER  - 
%0 Journal Article
%A B. V. Vinnitskii
%A V. N. Dil'nyi
%T A~generalization of the Beurling--Lax theorem
%J Matematičeskie zametki
%D 2006
%P 362-368
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a3/
%G ru
%F MZM_2006_79_3_a3
B. V. Vinnitskii; V. N. Dil'nyi. A~generalization of the Beurling--Lax theorem. Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 362-368. http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a3/