A~generalization of the Beurling--Lax theorem
Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 362-368
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain conditions for the completeness of the system $\{G(z)e^{\tau z},\tau\leqslant0\}$ in the space $H^2_\sigma(\mathbb C_+)$, $0\sigma+\infty$, of functions analytic in the right-hand half-plane for which
$$
\|f\|:=\sup_{-\pi/2\varphi\pi/2}\biggl\{\,\int_0^{+\infty}|f(re^{i\varphi})|^2e^{-2r\sigma|\sin\varphi|}\,dr\biggr\}^{1/2}+\infty.
$$
@article{MZM_2006_79_3_a3,
author = {B. V. Vinnitskii and V. N. Dil'nyi},
title = {A~generalization of the {Beurling--Lax} theorem},
journal = {Matemati\v{c}eskie zametki},
pages = {362--368},
publisher = {mathdoc},
volume = {79},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a3/}
}
B. V. Vinnitskii; V. N. Dil'nyi. A~generalization of the Beurling--Lax theorem. Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 362-368. http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a3/