On Morrey's estimate of the Sobolev norms of solutions of elliptic equations
Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 450-469.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a complete proof of Morrey's estimate for the $W^{1,p}$-norm of a solution of a second-order elliptic equation on a domain in terms of the $L_1$-norm of this solution. The dependence of the constant in this estimate on the coefficients of the equation is investigated.
@article{MZM_2006_79_3_a11,
     author = {S. V. Shaposhnikov},
     title = {On {Morrey's} estimate of the {Sobolev} norms of solutions of elliptic equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {450--469},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a11/}
}
TY  - JOUR
AU  - S. V. Shaposhnikov
TI  - On Morrey's estimate of the Sobolev norms of solutions of elliptic equations
JO  - Matematičeskie zametki
PY  - 2006
SP  - 450
EP  - 469
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a11/
LA  - ru
ID  - MZM_2006_79_3_a11
ER  - 
%0 Journal Article
%A S. V. Shaposhnikov
%T On Morrey's estimate of the Sobolev norms of solutions of elliptic equations
%J Matematičeskie zametki
%D 2006
%P 450-469
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a11/
%G ru
%F MZM_2006_79_3_a11
S. V. Shaposhnikov. On Morrey's estimate of the Sobolev norms of solutions of elliptic equations. Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 450-469. http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a11/

[1] Morrey C. B., Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | Zbl

[2] Bogachev V. I., Rekner M., “Obobschenie teoremy Khasminskogo o suschestvovanii invariantnykh mer dlya lokalno integriruemykh snosov”, Teoriya veroyatn. i ee prim., 45:3 (2000), 417–436 | MR | Zbl

[3] Bogachev V. I., Krylov N. V., Röckner M., “On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions”, Comm. Partial Differential Equations, 26:11–12 (2001), 2037–2080 | DOI | MR | Zbl

[4] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[5] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[6] Stampacchia G., Équations elliptiques du second ordre à coefficients discontinus, Les Presses de l'Université de Montréal, 1966 | Zbl

[7] Trudinger N. S., “Linear elliptic operators with measurable coefficients”, Ann. Scu. Norm. Sup. Pisa (3), 27 (1973), 265–308 | Zbl