Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_79_3_a1, author = {F. L. Bakharev}, title = {Extremally distant normed spaces with additional restrictions}, journal = {Matemati\v{c}eskie zametki}, pages = {339--352}, publisher = {mathdoc}, volume = {79}, number = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a1/} }
F. L. Bakharev. Extremally distant normed spaces with additional restrictions. Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 339-352. http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a1/
[1] Giannopoulos A. A., Milman V. D., “Euclidean structure in finite dimensional normed spaces”, Handbook on the Geometry of Banach Spaces, V. 1, eds. W. B. Johnson, J. Lindnstrauss, Elsevier, 2001, 707–779 | MR | Zbl
[2] Milman V. D., “Topics in asymptotic geometric analysis”, Geom. Funct. Anal., GAFA 2000: Visions in Mathematics. Towards 2000. Spec. Vol., Part II (Tel Aviv, 1999), 2000, 792–815 | MR
[3] Tomczak-Jaegermann N., Banach–Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, 38, Longman, Harlow–New York, 1989 | Zbl
[4] Gluskin E. D., “Diametr kompakta Minkovskogo primerno raven $n$”, Funktsion. analiz i ego prilozh., 15:1 (1981), 72–73 | Zbl
[5] Khrabrov A. I., “Otsenki rasstoyanii mezhdu summami prostranstv $\ell^p_n$”, Vestn. S.-Peterburg. un-ta. Ser. 1, 2000, no. 3, 57–63
[6] Rudelson M., “Estimates of the weak distance between finite-dimensional Banach spaces”, Israel J. Math., 89:1–3 (1995), 189–204 | DOI | MR | Zbl
[7] Tomczak-Jaegermann N., “The weak distance between finite-dimensional Banach spaces”, Math. Nachr., 119 (1984), 291–307 | DOI | MR | Zbl
[8] Szarek S. J., “On the existence and uniqueness of complex structure and spaces with “few” operators”, Trans. Amer. Math. Soc., 293 (1986), 339–353 | DOI | MR | Zbl
[9] Gluskin E. D., “Konechnomernye analogi prostranstv bez bazisa”, Dokl. AN SSSR, 216 (1981), 72–73 | MR
[10] Mankiewicz P., “Compact groups of operators on proportionals quotients of $\ell^1_n$”, Israel J. Math., 109 (1999), 75–91 | DOI | MR | Zbl
[11] Mankiewicz P., “Subspace mixing properties of operators in $\mathbb R^n$ with applications to Gluskin spaces”, Studia Math., 88:1 (1988), 51–67 | MR | Zbl
[12] Mankiewicz P., Tomczak-Jaegermann N., “Quotients of finite-dimensional Banach spaces; random phenomena”, Handbook on the Geometry of Banach spaces, V. 2, eds. W. B. Johnson, J. Lindnstrauss, Elsevier, 2003, 1201–1246 | MR
[13] Gluskin E. D., “Ekstremalnye svoistva ortogonalnykh parallelepipedov i ikh prilozheniya k geometrii banakhovykh prostranstv”, Matem. sb., 136 (178):1 (5) (1988), 85–96 | MR | Zbl
[14] Szarek S. J., “The finite dimensional basis problem with an appendix on nets of Grassmann manifolds”, Acta Math., 151 (1983), 153–179 | DOI | MR | Zbl