Extremally distant normed spaces with additional restrictions
Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 339-352.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the relationship between the Banach—Mazur distance and the modified Banach—Mazur distance. We sharpen the Szarek theorem on the construction of invariant norms with specific properties and construct extremally distant normed spaces with norms invariant under groups of automorphisms of small cardinality. We prove that the trivial upper bound for the Banach—Mazur distance obtained in terms of the modified Banach—Mazur distance is order-sharp.
@article{MZM_2006_79_3_a1,
     author = {F. L. Bakharev},
     title = {Extremally distant normed spaces with additional restrictions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {339--352},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a1/}
}
TY  - JOUR
AU  - F. L. Bakharev
TI  - Extremally distant normed spaces with additional restrictions
JO  - Matematičeskie zametki
PY  - 2006
SP  - 339
EP  - 352
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a1/
LA  - ru
ID  - MZM_2006_79_3_a1
ER  - 
%0 Journal Article
%A F. L. Bakharev
%T Extremally distant normed spaces with additional restrictions
%J Matematičeskie zametki
%D 2006
%P 339-352
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a1/
%G ru
%F MZM_2006_79_3_a1
F. L. Bakharev. Extremally distant normed spaces with additional restrictions. Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 339-352. http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a1/

[1] Giannopoulos A. A., Milman V. D., “Euclidean structure in finite dimensional normed spaces”, Handbook on the Geometry of Banach Spaces, V. 1, eds. W. B. Johnson, J. Lindnstrauss, Elsevier, 2001, 707–779 | MR | Zbl

[2] Milman V. D., “Topics in asymptotic geometric analysis”, Geom. Funct. Anal., GAFA 2000: Visions in Mathematics. Towards 2000. Spec. Vol., Part II (Tel Aviv, 1999), 2000, 792–815 | MR

[3] Tomczak-Jaegermann N., Banach–Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, 38, Longman, Harlow–New York, 1989 | Zbl

[4] Gluskin E. D., “Diametr kompakta Minkovskogo primerno raven $n$”, Funktsion. analiz i ego prilozh., 15:1 (1981), 72–73 | Zbl

[5] Khrabrov A. I., “Otsenki rasstoyanii mezhdu summami prostranstv $\ell^p_n$”, Vestn. S.-Peterburg. un-ta. Ser. 1, 2000, no. 3, 57–63

[6] Rudelson M., “Estimates of the weak distance between finite-dimensional Banach spaces”, Israel J. Math., 89:1–3 (1995), 189–204 | DOI | MR | Zbl

[7] Tomczak-Jaegermann N., “The weak distance between finite-dimensional Banach spaces”, Math. Nachr., 119 (1984), 291–307 | DOI | MR | Zbl

[8] Szarek S. J., “On the existence and uniqueness of complex structure and spaces with “few” operators”, Trans. Amer. Math. Soc., 293 (1986), 339–353 | DOI | MR | Zbl

[9] Gluskin E. D., “Konechnomernye analogi prostranstv bez bazisa”, Dokl. AN SSSR, 216 (1981), 72–73 | MR

[10] Mankiewicz P., “Compact groups of operators on proportionals quotients of $\ell^1_n$”, Israel J. Math., 109 (1999), 75–91 | DOI | MR | Zbl

[11] Mankiewicz P., “Subspace mixing properties of operators in $\mathbb R^n$ with applications to Gluskin spaces”, Studia Math., 88:1 (1988), 51–67 | MR | Zbl

[12] Mankiewicz P., Tomczak-Jaegermann N., “Quotients of finite-dimensional Banach spaces; random phenomena”, Handbook on the Geometry of Banach spaces, V. 2, eds. W. B. Johnson, J. Lindnstrauss, Elsevier, 2003, 1201–1246 | MR

[13] Gluskin E. D., “Ekstremalnye svoistva ortogonalnykh parallelepipedov i ikh prilozheniya k geometrii banakhovykh prostranstv”, Matem. sb., 136 (178):1 (5) (1988), 85–96 | MR | Zbl

[14] Szarek S. J., “The finite dimensional basis problem with an appendix on nets of Grassmann manifolds”, Acta Math., 151 (1983), 153–179 | DOI | MR | Zbl