Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_79_2_a8, author = {V. V. Novikov}, title = {A~Criterion for the {Uniform} {Convergence} of the {Lagrange--Jacobi} {Interpolation} {Process}}, journal = {Matemati\v{c}eskie zametki}, pages = {254--266}, publisher = {mathdoc}, volume = {79}, number = {2}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a8/} }
V. V. Novikov. A~Criterion for the Uniform Convergence of the Lagrange--Jacobi Interpolation Process. Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 254-266. http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a8/
[1] Geronimus Ya. L., “O skhodimosti interpolyatsionnogo protsessa Lagranzha s uzlami v kornyakh ortogonalnykh mnogochlenov”, Izv. AN SSSR. Ser. matem., 27 (1963), 529–560 | MR | Zbl
[2] Nevai G. P., “Zamechaniya ob interpolirovanii”, Acta Math. Sci. Hungar., 25 (1974), 123–144 | DOI | MR | Zbl
[3] Pilipchuk S. S., “O priznakakh skhodimosti interpolyatsionnykh protsessov”, Izv. vuzov. Matem., 1979, no. 12, 39–44 | MR | Zbl
[4] Privalov A. A., Teoriya interpolirovaniya funktsii, Izd-vo Saratovskogo un-ta, Saratov, 1990 | MR
[5] Privalov A. A., “O ravnomernoi skhodimosti interpolyatsionnykh protsessov Lagranzha”, Matem. zametki, 39:2 (1986), 228–244 | MR | Zbl
[6] Privalov A. A., “Kriterii ravnomernoi skhodimosti interpolyatsionnykh protsessov Lagranzha”, Izv. vuzov. Matem., 1986, no. 5, 49–59 | MR
[7] Erdős P., Grünwald G., “Über einen Faber'schen Satz”, Ann. of Math., 39 (1938), 257–261 | DOI | MR | Zbl
[8] Novikov V. V., “O raskhodimosti ryada Fure funktsii so skhodyaschimsya interpolyatsionnym protsessom Lagranzha”, Analysis Math., 29 (2003), 289–317 | DOI | MR | Zbl
[9] Segë G., Ortogonalnye mnogochleny, Fizmatlit, M., 1962