Compactness principle for periodic singular and fine structures
Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 244-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the compactness principle in the variable space $L^2$ related to a periodic Borel measure. We assume that the periodic Borel measure determines a periodic singular or a fine structure. We prove the compactness principle for periodic singular and fine grids, box structures, and composite structures on the plane and in space.
@article{MZM_2006_79_2_a7,
     author = {V. V. Shumilova},
     title = {Compactness principle for periodic singular and fine structures},
     journal = {Matemati\v{c}eskie zametki},
     pages = {244--253},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a7/}
}
TY  - JOUR
AU  - V. V. Shumilova
TI  - Compactness principle for periodic singular and fine structures
JO  - Matematičeskie zametki
PY  - 2006
SP  - 244
EP  - 253
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a7/
LA  - ru
ID  - MZM_2006_79_2_a7
ER  - 
%0 Journal Article
%A V. V. Shumilova
%T Compactness principle for periodic singular and fine structures
%J Matematičeskie zametki
%D 2006
%P 244-253
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a7/
%G ru
%F MZM_2006_79_2_a7
V. V. Shumilova. Compactness principle for periodic singular and fine structures. Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 244-253. http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a7/

[1] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[2] Zhikov V. V., “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izv. RAN. Ser. matem., 66:2 (2002), 81–148 | MR | Zbl

[3] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Matem. sb., 191:7 (2000), 31–72 | MR | Zbl

[4] Shumilova V. V., “O povedenii sobstvennykh znachenii operatora s dvumya malymi parametrami pri usrednenii”, Materialy VII VNTK “Sovremennye problemy matematiki i estestvoznaniya”, NGTU, N. Novgorod, 2003, 22–23

[5] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl

[6] Allaire G., “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23 (1992), 1482–1518 | DOI | MR | Zbl

[7] Shumilova V. V., “Nekotorye voprosy usredneniya zadach Dirikhle s dvumya malymi parametrami”, Materialy VIII VNTK “Sovremennye problemy matematiki i estestvoznaniya”, NGTU, N. Novgorod, 2004, 23–24