Continuation of separately analytic functions defined on part of the domain boundary
Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 234-243

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D\subset\mathbb C^n$ be a domain with smooth boundary $\partial D$, let $E\subset\partial D$ be a subset of positive Lebesgue measure $\operatorname{mes}(E)>0$, and let $F\subset G$ be a nonpluripolar compact set in a strongly pseudoconvex domain $G\subset\mathbb C^m$. We prove that, under an additional condition, each function separately analytic on the set $X=(D\times F)\cup(E\times G)$ has a holomorphic contination to the domain $\widehat X=\{(z,w)\in D\times G:\omega_{\mathrm{in}}^*(z,E,D)+\omega^*(w,F,G)1\}$, where $\omega^*$ is the $P$-measure and $\omega^*_{\mathrm{in}}$ is the interior $P$-measure.
@article{MZM_2006_79_2_a6,
     author = {A. S. Sadullaev and S. A. Imomkulov},
     title = {Continuation of separately analytic functions defined on part of the domain boundary},
     journal = {Matemati\v{c}eskie zametki},
     pages = {234--243},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a6/}
}
TY  - JOUR
AU  - A. S. Sadullaev
AU  - S. A. Imomkulov
TI  - Continuation of separately analytic functions defined on part of the domain boundary
JO  - Matematičeskie zametki
PY  - 2006
SP  - 234
EP  - 243
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a6/
LA  - ru
ID  - MZM_2006_79_2_a6
ER  - 
%0 Journal Article
%A A. S. Sadullaev
%A S. A. Imomkulov
%T Continuation of separately analytic functions defined on part of the domain boundary
%J Matematičeskie zametki
%D 2006
%P 234-243
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a6/
%G ru
%F MZM_2006_79_2_a6
A. S. Sadullaev; S. A. Imomkulov. Continuation of separately analytic functions defined on part of the domain boundary. Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 234-243. http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a6/