Dependence of the Convergence Domain of Spectral Expansions on the Geometry of the Set of Discontinuity of the Function Being Expanded
Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 178-193

Voir la notice de l'article provenant de la source Math-Net.Ru

For piecewise smooth functions, we indicate their domains of convergence and Riecz summarizability of their spectral expansions related to the Laplace operator in $\mathbb R^n$, depending on the geometry of points of discontinuity of the function being expanded.
@article{MZM_2006_79_2_a2,
     author = {Sh. A. Alimov},
     title = {Dependence of the {Convergence} {Domain} of {Spectral} {Expansions} on the {Geometry} of the {Set} of {Discontinuity} of the {Function} {Being} {Expanded}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {178--193},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a2/}
}
TY  - JOUR
AU  - Sh. A. Alimov
TI  - Dependence of the Convergence Domain of Spectral Expansions on the Geometry of the Set of Discontinuity of the Function Being Expanded
JO  - Matematičeskie zametki
PY  - 2006
SP  - 178
EP  - 193
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a2/
LA  - ru
ID  - MZM_2006_79_2_a2
ER  - 
%0 Journal Article
%A Sh. A. Alimov
%T Dependence of the Convergence Domain of Spectral Expansions on the Geometry of the Set of Discontinuity of the Function Being Expanded
%J Matematičeskie zametki
%D 2006
%P 178-193
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a2/
%G ru
%F MZM_2006_79_2_a2
Sh. A. Alimov. Dependence of the Convergence Domain of Spectral Expansions on the Geometry of the Set of Discontinuity of the Function Being Expanded. Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 178-193. http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a2/