A Compact Space Is Homotopy Equivalent to a CW-Complex If and Only If It Is an Absolute Neighborhood $h$-Retract
Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 309-310
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that a compact space is homotopy equivalent to a CW-complex if and only if it is an absolute neighborhood $h$-retract.
@article{MZM_2006_79_2_a13,
author = {P. V. Chernikov},
title = {A~Compact {Space} {Is} {Homotopy} {Equivalent} to a {CW-Complex} {If} and {Only} {If} {It} {Is} an {Absolute} {Neighborhood} $h${-Retract}},
journal = {Matemati\v{c}eskie zametki},
pages = {309--310},
year = {2006},
volume = {79},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a13/}
}
TY - JOUR AU - P. V. Chernikov TI - A Compact Space Is Homotopy Equivalent to a CW-Complex If and Only If It Is an Absolute Neighborhood $h$-Retract JO - Matematičeskie zametki PY - 2006 SP - 309 EP - 310 VL - 79 IS - 2 UR - http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a13/ LA - ru ID - MZM_2006_79_2_a13 ER -
P. V. Chernikov. A Compact Space Is Homotopy Equivalent to a CW-Complex If and Only If It Is an Absolute Neighborhood $h$-Retract. Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 309-310. http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a13/
[1] Postnikov M. M., Lektsii po algebraicheskoi topologii. Teoriya gomotopii kletochnykh prostranstv, Nauka, M., 1985 | MR | Zbl
[2] Saalfrank C. W., “A generalization of the concept of absolute retracts”, Proc. Amer. Math. Soc., 12 (1961), 374–378 | DOI | MR
[3] Chernikov P. V., Priblizhenie izmerimykh otobrazhenii i retrakty, Dep. VINITI No. 2453-B90, VINITI, M., 1990
[4] Massi U., Teoriya gomologii i kogomologii, Mir, M., 1981 | MR
[5] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR
[6] Aleksandrov P. S., Vvedenie v gomologicheskuyu teoriyu razmernosti, Nauka, M., 1975 | MR
[7] Rokhlin V. A., Fuks D. B., Nachalnyi kurs topologii. Geometricheskie glavy, Nauka, M., 1977 | MR | Zbl