A~Compact Space Is Homotopy Equivalent to a CW-Complex If and Only If It Is an Absolute Neighborhood $h$-Retract
Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 309-310.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a compact space is homotopy equivalent to a CW-complex if and only if it is an absolute neighborhood $h$-retract.
@article{MZM_2006_79_2_a13,
     author = {P. V. Chernikov},
     title = {A~Compact {Space} {Is} {Homotopy} {Equivalent} to a {CW-Complex} {If} and {Only} {If} {It} {Is} an {Absolute} {Neighborhood} $h${-Retract}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {309--310},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a13/}
}
TY  - JOUR
AU  - P. V. Chernikov
TI  - A~Compact Space Is Homotopy Equivalent to a CW-Complex If and Only If It Is an Absolute Neighborhood $h$-Retract
JO  - Matematičeskie zametki
PY  - 2006
SP  - 309
EP  - 310
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a13/
LA  - ru
ID  - MZM_2006_79_2_a13
ER  - 
%0 Journal Article
%A P. V. Chernikov
%T A~Compact Space Is Homotopy Equivalent to a CW-Complex If and Only If It Is an Absolute Neighborhood $h$-Retract
%J Matematičeskie zametki
%D 2006
%P 309-310
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a13/
%G ru
%F MZM_2006_79_2_a13
P. V. Chernikov. A~Compact Space Is Homotopy Equivalent to a CW-Complex If and Only If It Is an Absolute Neighborhood $h$-Retract. Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 309-310. http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a13/

[1] Postnikov M. M., Lektsii po algebraicheskoi topologii. Teoriya gomotopii kletochnykh prostranstv, Nauka, M., 1985 | MR | Zbl

[2] Saalfrank C. W., “A generalization of the concept of absolute retracts”, Proc. Amer. Math. Soc., 12 (1961), 374–378 | DOI | MR

[3] Chernikov P. V., Priblizhenie izmerimykh otobrazhenii i retrakty, Dep. VINITI No. 2453-B90, VINITI, M., 1990

[4] Massi U., Teoriya gomologii i kogomologii, Mir, M., 1981 | MR

[5] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR

[6] Aleksandrov P. S., Vvedenie v gomologicheskuyu teoriyu razmernosti, Nauka, M., 1975 | MR

[7] Rokhlin V. A., Fuks D. B., Nachalnyi kurs topologii. Geometricheskie glavy, Nauka, M., 1977 | MR | Zbl