Comparison of Two Generalized Trigonometric Integrals
Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 278-287

Voir la notice de l'article provenant de la source Math-Net.Ru

The $P^2$-integral of James is compared with the $T^2$-integral. A trigonometric series convergent almost everywhere to a function which is $T^2$-integrable but not $P^2$-integrable is constructed.
@article{MZM_2006_79_2_a10,
     author = {V. A. Skvortsov and N. N. Kholshchevnikova},
     title = {Comparison of {Two} {Generalized} {Trigonometric} {Integrals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {278--287},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a10/}
}
TY  - JOUR
AU  - V. A. Skvortsov
AU  - N. N. Kholshchevnikova
TI  - Comparison of Two Generalized Trigonometric Integrals
JO  - Matematičeskie zametki
PY  - 2006
SP  - 278
EP  - 287
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a10/
LA  - ru
ID  - MZM_2006_79_2_a10
ER  - 
%0 Journal Article
%A V. A. Skvortsov
%A N. N. Kholshchevnikova
%T Comparison of Two Generalized Trigonometric Integrals
%J Matematičeskie zametki
%D 2006
%P 278-287
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a10/
%G ru
%F MZM_2006_79_2_a10
V. A. Skvortsov; N. N. Kholshchevnikova. Comparison of Two Generalized Trigonometric Integrals. Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 278-287. http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a10/