Comparison of Two Generalized Trigonometric Integrals
Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 278-287
Voir la notice de l'article provenant de la source Math-Net.Ru
The $P^2$-integral of James is compared with the $T^2$-integral. A trigonometric series convergent almost everywhere to a function which is $T^2$-integrable but not $P^2$-integrable is constructed.
@article{MZM_2006_79_2_a10,
author = {V. A. Skvortsov and N. N. Kholshchevnikova},
title = {Comparison of {Two} {Generalized} {Trigonometric} {Integrals}},
journal = {Matemati\v{c}eskie zametki},
pages = {278--287},
publisher = {mathdoc},
volume = {79},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a10/}
}
V. A. Skvortsov; N. N. Kholshchevnikova. Comparison of Two Generalized Trigonometric Integrals. Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 278-287. http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a10/