Comparison of Two Generalized Trigonometric Integrals
Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 278-287
Cet article a éte moissonné depuis la source Math-Net.Ru
The $P^2$-integral of James is compared with the $T^2$-integral. A trigonometric series convergent almost everywhere to a function which is $T^2$-integrable but not $P^2$-integrable is constructed.
@article{MZM_2006_79_2_a10,
author = {V. A. Skvortsov and N. N. Kholshchevnikova},
title = {Comparison of {Two} {Generalized} {Trigonometric} {Integrals}},
journal = {Matemati\v{c}eskie zametki},
pages = {278--287},
year = {2006},
volume = {79},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a10/}
}
V. A. Skvortsov; N. N. Kholshchevnikova. Comparison of Two Generalized Trigonometric Integrals. Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 278-287. http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a10/
[1] Vinogradova I. A., Skvortsov V. A., “Obobschennye integraly i ryady Fure”, Itogi nauki i tekhn. Matem. analiz 1970, VINITI, Moskva, 1971, 65–107 | MR | Zbl
[2] James R. D., “A generalized integral, II”, Canad. J. Math., 1950, no. 3, 297–306 | MR | Zbl
[3] Kholschevnikova N. N., “Obobschennyi trigonometricheskii integral”, Izv. NAN Armenii. Ser. matem., 36:4 (2001), 82–89 | MR
[4] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[5] Skvortsov V. A., “Svyaz mezhdu nekotorymi integralami”, Vestn. MGU. Ser. 1. Matem., mekh., 1967, no. 4, 68–71
[6] Sklyarenko V. A., “Ob integrirovanii po chastyam v SCP-integrale Berkillya”, Matem. sb., 112 (154):4 (8) (1980), 630–646 | MR | Zbl