Estimates for the Eigenvalues of Matrices
Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 169-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

For matrices whose eigenvalues are real (such as Hermitian or real symmetric matrices), we derive simple explicit estimates for the maximal $(\lambda_{\max})$ and the minimal $(\lambda_{\min})$ eigenvalues in terms of determinants of order less than 3. For $3\times3$ matrices, we derive sharper estimates, which use $\det A$ but do not require to solve cubic equations.
@article{MZM_2006_79_2_a1,
     author = {R. I. Alidema and A. F. Filippov},
     title = {Estimates for the {Eigenvalues} of {Matrices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {169--177},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a1/}
}
TY  - JOUR
AU  - R. I. Alidema
AU  - A. F. Filippov
TI  - Estimates for the Eigenvalues of Matrices
JO  - Matematičeskie zametki
PY  - 2006
SP  - 169
EP  - 177
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a1/
LA  - ru
ID  - MZM_2006_79_2_a1
ER  - 
%0 Journal Article
%A R. I. Alidema
%A A. F. Filippov
%T Estimates for the Eigenvalues of Matrices
%J Matematičeskie zametki
%D 2006
%P 169-177
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a1/
%G ru
%F MZM_2006_79_2_a1
R. I. Alidema; A. F. Filippov. Estimates for the Eigenvalues of Matrices. Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 169-177. http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a1/

[1] Fadeev D. K., Fadeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1960

[2] Gerschgorin S., “Über die Abgrenzung der Eigenwerte einer Matrix”, Izv. AN SSSR. Matem. i estestv. nauki, 1931, no. 7, 749–754

[3] Bakhvalov N. S., Zhadkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | Zbl