Autoregulated Impulse Point Heating of a~Finite Medium
Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 102-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a finite heat conducting medium whose boundary is maintained at zero temperature and, moreover, to which the same amount of heat is supplied at a certain point at the instant when the temperature at this point decreases to a given level. Up to an arbitrary shift in time, we prove the existence and uniqueness of a periodic regime with a unique heat pulse during each period. We present an efficient algorithm for constructing this regime if the medium is either an $n$-dimensional ball heated at the center or an interval heated at an arbitrary point.
@article{MZM_2006_79_1_a7,
     author = {A. D. Myshkis},
     title = {Autoregulated {Impulse} {Point} {Heating} of {a~Finite} {Medium}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {102--106},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a7/}
}
TY  - JOUR
AU  - A. D. Myshkis
TI  - Autoregulated Impulse Point Heating of a~Finite Medium
JO  - Matematičeskie zametki
PY  - 2006
SP  - 102
EP  - 106
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a7/
LA  - ru
ID  - MZM_2006_79_1_a7
ER  - 
%0 Journal Article
%A A. D. Myshkis
%T Autoregulated Impulse Point Heating of a~Finite Medium
%J Matematičeskie zametki
%D 2006
%P 102-106
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a7/
%G ru
%F MZM_2006_79_1_a7
A. D. Myshkis. Autoregulated Impulse Point Heating of a~Finite Medium. Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 102-106. http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a7/

[1] Myshkis A. D., “Protsess teploprovodnosti s avtoreguliruemoi impulsnoi podderzhkoi”, Avtomatika i telemekhanika, 1995, no. 2, 35–43 | MR | Zbl

[2] Myshkis A. D., “On a recurrently defined sequence”, J. Differential Equations Appl., 3:1 (1997), 89–91 | DOI | MR | Zbl

[3] Vatson G. N., Teoriya besselevykh funktsii, Ch. 1, IL, M., 1949

[4] Sharkovskii A. N., Maistrenko Yu. L., Romanenko E. Yu., Raznostnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1986 | MR