Autoregulated Impulse Point Heating of a Finite Medium
Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 102-106
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a finite heat conducting medium whose boundary is maintained at zero temperature and, moreover, to which the same amount of heat is supplied at a certain point at the instant when the temperature at this point decreases to a given level. Up to an arbitrary shift in time, we prove the existence and uniqueness of a periodic regime with a unique heat pulse during each period. We present an efficient algorithm for constructing this regime if the medium is either an $n$-dimensional ball heated at the center or an interval heated at an arbitrary point.
@article{MZM_2006_79_1_a7,
author = {A. D. Myshkis},
title = {Autoregulated {Impulse} {Point} {Heating} of {a~Finite} {Medium}},
journal = {Matemati\v{c}eskie zametki},
pages = {102--106},
year = {2006},
volume = {79},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a7/}
}
A. D. Myshkis. Autoregulated Impulse Point Heating of a Finite Medium. Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 102-106. http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a7/
[1] Myshkis A. D., “Protsess teploprovodnosti s avtoreguliruemoi impulsnoi podderzhkoi”, Avtomatika i telemekhanika, 1995, no. 2, 35–43 | MR | Zbl
[2] Myshkis A. D., “On a recurrently defined sequence”, J. Differential Equations Appl., 3:1 (1997), 89–91 | DOI | MR | Zbl
[3] Vatson G. N., Teoriya besselevykh funktsii, Ch. 1, IL, M., 1949
[4] Sharkovskii A. N., Maistrenko Yu. L., Romanenko E. Yu., Raznostnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1986 | MR