Conjugate Points on a Geodesic with Random Curvature
Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 95-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study conjugate points on a renewable geodesic on which the curvature is a random process. We construct the upper bound for the mean distance between neighboring conjugate points.
@article{MZM_2006_79_1_a6,
     author = {V. G. Lamburt},
     title = {Conjugate {Points} on a {Geodesic} with {Random} {Curvature}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {95--101},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a6/}
}
TY  - JOUR
AU  - V. G. Lamburt
TI  - Conjugate Points on a Geodesic with Random Curvature
JO  - Matematičeskie zametki
PY  - 2006
SP  - 95
EP  - 101
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a6/
LA  - ru
ID  - MZM_2006_79_1_a6
ER  - 
%0 Journal Article
%A V. G. Lamburt
%T Conjugate Points on a Geodesic with Random Curvature
%J Matematičeskie zametki
%D 2006
%P 95-101
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a6/
%G ru
%F MZM_2006_79_1_a6
V. G. Lamburt. Conjugate Points on a Geodesic with Random Curvature. Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 95-101. http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a6/

[1] Gromol D., Klingenberg V., Meier V., Rimanova geometriya v tselom, Mir, M., 1971

[2] Efimov N. V., “Giperbolicheskie zadachi teorii poverkhnostei”, Tr. Mezhdunarodnogo kongressa matematikov, Mir, M., 1966

[3] Lamburt V. G., Sokolov D. D., Tutubalin V. N., “Polya Yakobi vdol geodezicheskikh so sluchainoi kriviznoi”, Matem. zametki, 74:3 (2003), 416–424 | MR | Zbl

[4] Lamburt V. G., Rozendorn E. R., Sokolov D. D., Tutubalin V. N., “Geodezicheskie so sluchainoi kriviznoi na rimanovykh i psevdorimanovykh mnogoobraziyakh”, Tr. geometr. seminara Kazanskogo gos. un-ta, 24 (2003), 99–106