Conjugate Points on a Geodesic with Random Curvature
Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 95-101
Cet article a éte moissonné depuis la source Math-Net.Ru
We study conjugate points on a renewable geodesic on which the curvature is a random process. We construct the upper bound for the mean distance between neighboring conjugate points.
@article{MZM_2006_79_1_a6,
author = {V. G. Lamburt},
title = {Conjugate {Points} on a {Geodesic} with {Random} {Curvature}},
journal = {Matemati\v{c}eskie zametki},
pages = {95--101},
year = {2006},
volume = {79},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a6/}
}
V. G. Lamburt. Conjugate Points on a Geodesic with Random Curvature. Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 95-101. http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a6/
[1] Gromol D., Klingenberg V., Meier V., Rimanova geometriya v tselom, Mir, M., 1971
[2] Efimov N. V., “Giperbolicheskie zadachi teorii poverkhnostei”, Tr. Mezhdunarodnogo kongressa matematikov, Mir, M., 1966
[3] Lamburt V. G., Sokolov D. D., Tutubalin V. N., “Polya Yakobi vdol geodezicheskikh so sluchainoi kriviznoi”, Matem. zametki, 74:3 (2003), 416–424 | MR | Zbl
[4] Lamburt V. G., Rozendorn E. R., Sokolov D. D., Tutubalin V. N., “Geodezicheskie so sluchainoi kriviznoi na rimanovykh i psevdorimanovykh mnogoobraziyakh”, Tr. geometr. seminara Kazanskogo gos. un-ta, 24 (2003), 99–106