Weakly Convex Sets and Their Properties
Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 60-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the notion of a weakly convex set is introduced. Sharp estimates for the weak convexity constants of the sum and difference of such sets are given. It is proved that, in Hilbert space, the smoothness of a set is equivalent to the weak convexity of the set and its complement. Here, by definition, the smoothness of a set means that the field of unit outward normal vectors is defined on the boundary of the set; this vector field satisfies the Lipschitz condition. We obtain the minimax theorem for a class of problems with smooth Lebesgue sets of the goal function and strongly convex constraints. As an application of the results obtained, we prove the alternative theorem for program strategies in a linear differential quality game.
@article{MZM_2006_79_1_a4,
     author = {G. E. Ivanov},
     title = {Weakly {Convex} {Sets} and {Their} {Properties}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {60--86},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a4/}
}
TY  - JOUR
AU  - G. E. Ivanov
TI  - Weakly Convex Sets and Their Properties
JO  - Matematičeskie zametki
PY  - 2006
SP  - 60
EP  - 86
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a4/
LA  - ru
ID  - MZM_2006_79_1_a4
ER  - 
%0 Journal Article
%A G. E. Ivanov
%T Weakly Convex Sets and Their Properties
%J Matematičeskie zametki
%D 2006
%P 60-86
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a4/
%G ru
%F MZM_2006_79_1_a4
G. E. Ivanov. Weakly Convex Sets and Their Properties. Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 60-86. http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a4/

[1] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004

[2] Ivanov G. E., Polovinkin E. S., “O silno vypuklykh lineinykh differentsialnykh igrakh”, Differents. uravneniya, 31:10 (1995), 1641–1648 | MR | Zbl

[3] Ivanov G. E., “Nepreryvnost optimalnykh upravlenii v differentsialnykh igrakh i nekotorye svoistva slabo i silno vypuklykh funktsii”, Matem. zametki, 66:6 (1999), 816–839 | MR | Zbl

[4] Ivanov G. E., “Gladkost i vypuklost marginalnykh funktsii”, Nekotorye problemy fundamentalnoi i prikladnoi matematiki, Sb. nauchnykh trudov, Moskovskii fiziko-tekhnicheskii institut, M., 1999, 79–92