Model Approach to Nonstandard Analysis in the Context of Axiomatic Set Theory
Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 134-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the model approach to nonstandard analysis is developed on the basis of Zermelo–Fraenkel axiomatic set theory with atoms. The traditional consideration of the standard superstructure $V$ as the primary object of nonstandard analysis is justified. Set-theoretic axioms for the nonstandard system $*V$ are obtained.
@article{MZM_2006_79_1_a11,
     author = {I. V. Yakovlev},
     title = {Model {Approach} to {Nonstandard} {Analysis} in the {Context} of {Axiomatic} {Set} {Theory}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {134--141},
     year = {2006},
     volume = {79},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a11/}
}
TY  - JOUR
AU  - I. V. Yakovlev
TI  - Model Approach to Nonstandard Analysis in the Context of Axiomatic Set Theory
JO  - Matematičeskie zametki
PY  - 2006
SP  - 134
EP  - 141
VL  - 79
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a11/
LA  - ru
ID  - MZM_2006_79_1_a11
ER  - 
%0 Journal Article
%A I. V. Yakovlev
%T Model Approach to Nonstandard Analysis in the Context of Axiomatic Set Theory
%J Matematičeskie zametki
%D 2006
%P 134-141
%V 79
%N 1
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a11/
%G ru
%F MZM_2006_79_1_a11
I. V. Yakovlev. Model Approach to Nonstandard Analysis in the Context of Axiomatic Set Theory. Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 134-141. http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a11/

[1] Devis M., Prikladnoi nestandartnyi analiz, Mir, M., 1980 | MR

[2] Albeverio S., Fenstad I., Kheeg-Kron R., Lindstrem T., Nestandartnye metody v stokhasticheskom analize i matematicheskoi fizike, Mir, M., 1990 | MR | Zbl

[3] Nonstandard Analysis for the Working Mathematician, eds. Loeb P., Wolff M. P. H., Kluwer, Dordrecht, 2000 | MR

[4] Nelson E., “Internal set theory: a new approach to nonstandard analysis”, Bull. Amer. Math. Soc., 83:6 (1977), 1165–1198 | DOI | MR | Zbl

[5] Gordon E. I., Kusraev A. G., Kutateladze S. S., Infinitezimalnyi analiz, Ch. 1, Izd-vo IM, Novosibirsk, 2001

[6] Yakovlev V. F., “Rasshirennyi universum dlya sistem s minimalnymi strukturami”, Dokl. AN SSSR, 319:1 (1991), 103–105 | MR | Zbl

[7] Iekh T., Teoriya mnozhestv i metod forsinga, Mir, M., 1973 | MR

[8] Keisler G., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977 | MR

[9] Makkai M., “Dopustimye mnozhestva i beskonechnaya logika”, Spravochnaya kniga po matematicheskoi logike, Ch. 1, Nauka, M., 1982, 235–288