Model Approach to Nonstandard Analysis in the Context of Axiomatic Set Theory
Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 134-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the model approach to nonstandard analysis is developed on the basis of Zermelo–Fraenkel axiomatic set theory with atoms. The traditional consideration of the standard superstructure $V$ as the primary object of nonstandard analysis is justified. Set-theoretic axioms for the nonstandard system $*V$ are obtained.
@article{MZM_2006_79_1_a11,
     author = {I. V. Yakovlev},
     title = {Model {Approach} to {Nonstandard} {Analysis} in the {Context} of {Axiomatic} {Set} {Theory}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {134--141},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a11/}
}
TY  - JOUR
AU  - I. V. Yakovlev
TI  - Model Approach to Nonstandard Analysis in the Context of Axiomatic Set Theory
JO  - Matematičeskie zametki
PY  - 2006
SP  - 134
EP  - 141
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a11/
LA  - ru
ID  - MZM_2006_79_1_a11
ER  - 
%0 Journal Article
%A I. V. Yakovlev
%T Model Approach to Nonstandard Analysis in the Context of Axiomatic Set Theory
%J Matematičeskie zametki
%D 2006
%P 134-141
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a11/
%G ru
%F MZM_2006_79_1_a11
I. V. Yakovlev. Model Approach to Nonstandard Analysis in the Context of Axiomatic Set Theory. Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 134-141. http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a11/

[1] Devis M., Prikladnoi nestandartnyi analiz, Mir, M., 1980 | MR

[2] Albeverio S., Fenstad I., Kheeg-Kron R., Lindstrem T., Nestandartnye metody v stokhasticheskom analize i matematicheskoi fizike, Mir, M., 1990 | MR | Zbl

[3] Nonstandard Analysis for the Working Mathematician, eds. Loeb P., Wolff M. P. H., Kluwer, Dordrecht, 2000 | MR

[4] Nelson E., “Internal set theory: a new approach to nonstandard analysis”, Bull. Amer. Math. Soc., 83:6 (1977), 1165–1198 | DOI | MR | Zbl

[5] Gordon E. I., Kusraev A. G., Kutateladze S. S., Infinitezimalnyi analiz, Ch. 1, Izd-vo IM, Novosibirsk, 2001

[6] Yakovlev V. F., “Rasshirennyi universum dlya sistem s minimalnymi strukturami”, Dokl. AN SSSR, 319:1 (1991), 103–105 | MR | Zbl

[7] Iekh T., Teoriya mnozhestv i metod forsinga, Mir, M., 1973 | MR

[8] Keisler G., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977 | MR

[9] Makkai M., “Dopustimye mnozhestva i beskonechnaya logika”, Spravochnaya kniga po matematicheskoi logike, Ch. 1, Nauka, M., 1982, 235–288