Balanced Graph Partitions
Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 127-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the set of vertices $\mathscr V$, $|\mathscr V|=rk$, of a connected graph $G$ can be split into $r$ subsets of the same cardinality in such a way that the distance between any vertex of $G$ and any subset of the partition is at most $r$.
@article{MZM_2006_79_1_a10,
     author = {K. D. Protasova},
     title = {Balanced {Graph} {Partitions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {127--133},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a10/}
}
TY  - JOUR
AU  - K. D. Protasova
TI  - Balanced Graph Partitions
JO  - Matematičeskie zametki
PY  - 2006
SP  - 127
EP  - 133
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a10/
LA  - ru
ID  - MZM_2006_79_1_a10
ER  - 
%0 Journal Article
%A K. D. Protasova
%T Balanced Graph Partitions
%J Matematičeskie zametki
%D 2006
%P 127-133
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a10/
%G ru
%F MZM_2006_79_1_a10
K. D. Protasova. Balanced Graph Partitions. Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 127-133. http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a10/

[1] Karaganis J., “On the cube of graphs”, Canad. Math. Bull., 11 (1969), 295–296 | MR

[2] Protasova K. D., “Kaleidoscopic graphs”, Math. Stud., 18 (2002), 3–9 | MR | Zbl