On Distribution Semigroups with a Singularity at Zero and Bounded Solutions of Differential Inclusions
Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 19-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study distribution semigroups with a singularity at zero and their generators, and establish a relationship between this semigroup and a degenerate semigroup of linear operators on the open right half-line. The study makes an intensive use of spectral theory of linear relations. Applications to the existence problem for bounded solutions of linear differential inclusions are obtained.
@article{MZM_2006_79_1_a1,
     author = {A. G. Baskakov and K. I. Chernyshov},
     title = {On {Distribution} {Semigroups} with a {Singularity} at {Zero} and {Bounded} {Solutions} of {Differential} {Inclusions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {19--33},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a1/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - K. I. Chernyshov
TI  - On Distribution Semigroups with a Singularity at Zero and Bounded Solutions of Differential Inclusions
JO  - Matematičeskie zametki
PY  - 2006
SP  - 19
EP  - 33
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a1/
LA  - ru
ID  - MZM_2006_79_1_a1
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A K. I. Chernyshov
%T On Distribution Semigroups with a Singularity at Zero and Bounded Solutions of Differential Inclusions
%J Matematičeskie zametki
%D 2006
%P 19-33
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a1/
%G ru
%F MZM_2006_79_1_a1
A. G. Baskakov; K. I. Chernyshov. On Distribution Semigroups with a Singularity at Zero and Bounded Solutions of Differential Inclusions. Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 19-33. http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a1/

[1] Lions J.-L., “Les semi-groupes distributions”, Portugal. Math., 19 (1960), 141–164 | MR | Zbl

[2] Ushijima T., “On the strong continuity of distribution semi-groups”, J. Fac. Sci. Univ. Tokyo Sect. I, 17 (1970), 363–372 | MR | Zbl

[3] Melnikova I. V., Filinkov A. I., “Integrirovannye polugruppy i $C$-polugruppy. Korrektnost i regulyarizatsiya differentsialno-operatornykh zadach”, UMN, 49:6 (1994), 111–150 | MR

[4] Baskakov A. G., Chernyshov K. I., “Spektralnyi analiz lineinykh otnoshenii i vyrozhdennye polugruppy operatorov”, Matem. sb., 193:11 (2002), 3–42 | MR | Zbl

[5] Cross R., Multivalued Linear Operators, M. Dekker, New York, 1998 | MR | Zbl

[6] Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Pure Applied Math. Ser. Monographs Textbooks, 215, M. Dekker, New York, 1998

[7] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[8] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977

[9] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo MGU, M., 1978 | MR | Zbl

[10] Arendt W., Batty C. J. K., Hieber M., Neubrander F., Vector-valued Laplace Transforms and Cauchy Problems, Birkhäuser-Verlag, Basel–Boston–Berlin, 2001 | MR | Zbl

[11] Baskakov A. G., “Polugruppy raznostnykh operatorov v spektralnom analize lineinykh differentsialnykh operatorov”, Funktsion. analiz i ego prilozh., 30:3 (1996), 1–11 | MR | Zbl

[12] Engel K.-J., Nagel R., One-parameter Semigroups for Linear Evolution Equations, Gradute Texts in Math., 194, Springer-Verlag, 2000 | MR | Zbl