Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_78_6_a7, author = {S. A. Nazarov and A. S. Slutskij}, title = {Homogenization of an {Elliptic} {System} as the {Cells} of {Periodicity} are {Refined} in {One} {Direction}}, journal = {Matemati\v{c}eskie zametki}, pages = {878--891}, publisher = {mathdoc}, volume = {78}, number = {6}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a7/} }
TY - JOUR AU - S. A. Nazarov AU - A. S. Slutskij TI - Homogenization of an Elliptic System as the Cells of Periodicity are Refined in One Direction JO - Matematičeskie zametki PY - 2005 SP - 878 EP - 891 VL - 78 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a7/ LA - ru ID - MZM_2005_78_6_a7 ER -
S. A. Nazarov; A. S. Slutskij. Homogenization of an Elliptic System as the Cells of Periodicity are Refined in One Direction. Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 878-891. http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a7/
[1] Nečas J., Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967 | MR | Zbl
[2] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, UMN, 54:5 (1999), 77–142 | MR | Zbl
[3] Nazarov S. A., “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Problemy matem. analiza, no. 16, Izd-vo SPbGU, SPb., 1997, 167–192
[4] Kozlov S. M., “Harmonization and homogenization on fractals”, Comm. Math. Phys., 153 (1993), 339–357 | DOI | Zbl
[5] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Matem. sb., 186:8 (1996), 3–40 | MR
[6] Bakhvalov N. S., Panasenko G. A., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl
[7] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984
[8] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990 | Zbl
[9] Mazja W. G., Nazarov S. A., Plamenewski B. A., Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, V. 2, Akademie-Verlag, Berlin, 1991
[10] Nazarov S. A., Asimptoticheskii analiz tonkikh plastin i sterzhnei. T. 1. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002, 408 pp.
[11] Nazarov S. A., “Obschaya skhema osredneniya samosopryazhennykh ellipticheskikh sistem v mnogomernykh oblastyakh, v tom chisle tonkikh”, Algebra i analiz, 7:5 (1995), 1–92 | Zbl
[12] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions, 2”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | DOI | Zbl