Homogenization of an Elliptic System as the Cells of Periodicity are Refined in One Direction
Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 878-891.

Voir la notice de l'article provenant de la source Math-Net.Ru

We homogenize a second-order elliptic system with anisotropic fractal structure characteristic of many real objects: the cells of periodicity are refined in one direction. This problem is considered in the rectangle with Dirichlet conditions given on two sides and periodicity conditions on two other sides. An explicit formula for the homogenized operator is established, and an asymptotic estimate of the remainder is obtained. The accuracy of approximation depends on the exponent $\varkappa\in(0,1/2]$ of smoothness of the right-hand side with respect to slow variables (the Sobolev–Slobodetskii space) and is estimated by $O(h^\varkappa)$ for $\varkappa\in(0,1/2)$ and by $O(h^{1/2}(1+|\log h|))$ for $\varkappa=1/2$.
@article{MZM_2005_78_6_a7,
     author = {S. A. Nazarov and A. S. Slutskij},
     title = {Homogenization of an {Elliptic} {System} as the {Cells} of {Periodicity} are {Refined} in {One} {Direction}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {878--891},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a7/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - A. S. Slutskij
TI  - Homogenization of an Elliptic System as the Cells of Periodicity are Refined in One Direction
JO  - Matematičeskie zametki
PY  - 2005
SP  - 878
EP  - 891
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a7/
LA  - ru
ID  - MZM_2005_78_6_a7
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A A. S. Slutskij
%T Homogenization of an Elliptic System as the Cells of Periodicity are Refined in One Direction
%J Matematičeskie zametki
%D 2005
%P 878-891
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a7/
%G ru
%F MZM_2005_78_6_a7
S. A. Nazarov; A. S. Slutskij. Homogenization of an Elliptic System as the Cells of Periodicity are Refined in One Direction. Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 878-891. http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a7/

[1] Nečas J., Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967 | MR | Zbl

[2] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, UMN, 54:5 (1999), 77–142 | MR | Zbl

[3] Nazarov S. A., “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Problemy matem. analiza, no. 16, Izd-vo SPbGU, SPb., 1997, 167–192

[4] Kozlov S. M., “Harmonization and homogenization on fractals”, Comm. Math. Phys., 153 (1993), 339–357 | DOI | Zbl

[5] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Matem. sb., 186:8 (1996), 3–40 | MR

[6] Bakhvalov N. S., Panasenko G. A., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[7] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984

[8] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990 | Zbl

[9] Mazja W. G., Nazarov S. A., Plamenewski B. A., Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, V. 2, Akademie-Verlag, Berlin, 1991

[10] Nazarov S. A., Asimptoticheskii analiz tonkikh plastin i sterzhnei. T. 1. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002, 408 pp.

[11] Nazarov S. A., “Obschaya skhema osredneniya samosopryazhennykh ellipticheskikh sistem v mnogomernykh oblastyakh, v tom chisle tonkikh”, Algebra i analiz, 7:5 (1995), 1–92 | Zbl

[12] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions, 2”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | DOI | Zbl