Homogenization of an Elliptic System as the Cells of Periodicity are Refined in One Direction
Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 878-891
Voir la notice de l'article provenant de la source Math-Net.Ru
We homogenize a second-order elliptic system with anisotropic fractal structure characteristic of many real objects: the cells of periodicity are refined in one direction. This problem is considered in the rectangle with Dirichlet conditions given on two sides and periodicity conditions on two other sides. An explicit formula for the homogenized operator is established, and an asymptotic estimate of the remainder is obtained. The accuracy of approximation depends on the exponent $\varkappa\in(0,1/2]$ of smoothness of the right-hand side with respect to slow variables (the Sobolev–Slobodetskii space) and is estimated by $O(h^\varkappa)$ for $\varkappa\in(0,1/2)$ and by $O(h^{1/2}(1+|\log h|))$ for $\varkappa=1/2$.
@article{MZM_2005_78_6_a7,
author = {S. A. Nazarov and A. S. Slutskij},
title = {Homogenization of an {Elliptic} {System} as the {Cells} of {Periodicity} are {Refined} in {One} {Direction}},
journal = {Matemati\v{c}eskie zametki},
pages = {878--891},
publisher = {mathdoc},
volume = {78},
number = {6},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a7/}
}
TY - JOUR AU - S. A. Nazarov AU - A. S. Slutskij TI - Homogenization of an Elliptic System as the Cells of Periodicity are Refined in One Direction JO - Matematičeskie zametki PY - 2005 SP - 878 EP - 891 VL - 78 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a7/ LA - ru ID - MZM_2005_78_6_a7 ER -
S. A. Nazarov; A. S. Slutskij. Homogenization of an Elliptic System as the Cells of Periodicity are Refined in One Direction. Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 878-891. http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a7/