On a General Theorem of Set Theory Leading to the Gibbs, Bose–Einstein, and Pareto Distributions as well as to the Zipf–Mandelbrot Law for the Stock Market
Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 870-877 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The notion of density of a finite set is introduced. We prove a general theorem of set theory which refines the Gibbs, Bose–Einstein, and Pareto distributions as well as the Zipf law.
@article{MZM_2005_78_6_a6,
     author = {V. P. Maslov},
     title = {On a {General} {Theorem} of {Set} {Theory} {Leading} to the {Gibbs,} {Bose{\textendash}Einstein,} and {Pareto} {Distributions} as well as to the {Zipf{\textendash}Mandelbrot} {Law} for the {Stock} {Market}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {870--877},
     year = {2005},
     volume = {78},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a6/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - On a General Theorem of Set Theory Leading to the Gibbs, Bose–Einstein, and Pareto Distributions as well as to the Zipf–Mandelbrot Law for the Stock Market
JO  - Matematičeskie zametki
PY  - 2005
SP  - 870
EP  - 877
VL  - 78
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a6/
LA  - ru
ID  - MZM_2005_78_6_a6
ER  - 
%0 Journal Article
%A V. P. Maslov
%T On a General Theorem of Set Theory Leading to the Gibbs, Bose–Einstein, and Pareto Distributions as well as to the Zipf–Mandelbrot Law for the Stock Market
%J Matematičeskie zametki
%D 2005
%P 870-877
%V 78
%N 6
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a6/
%G ru
%F MZM_2005_78_6_a6
V. P. Maslov. On a General Theorem of Set Theory Leading to the Gibbs, Bose–Einstein, and Pareto Distributions as well as to the Zipf–Mandelbrot Law for the Stock Market. Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 870-877. http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a6/

[1] Gurevich V., Volmen G., Teoriya razmernostei, M., 1948

[2] Maslov V. P., “Nelineinoe srednee v ekonomike”, Matem. zametki, 78:3 (2005), 377–395 | MR | Zbl

[3] Maslov V. P., “Zakon bolshikh uklonenii v teorii chisel. Vychislimaya funktsiya ot mnogikh argumentov i dekodirovanie”, Dokl. RAN, 404:6 (2005), 731–736 | MR

[4] Koval G. V., Maslov V. P., “Ob otsenkakh dlya bolshoi statisticheskoi summy” (to appear)

[5] Mandelbrot B., “Structure formelle des textes et communication”, Word, 10 (1), New York, 1954

[6] Maslov V. P., “Printsip vozrastaniya slozhnosti formirovanii portfelya na fondovoi birzhe”, Dokl. RAN, 404:4 (2005), 446–450 | MR

[7] Maslov V. P., “Utochnenie zakona Tsipfa dlya chastotnykh slovarei i fondovoi birzhi”, Dokl. RAN, 405:5 (2005), 591–594 | MR