On a General Theorem of Set Theory Leading to the Gibbs, Bose--Einstein, and Pareto Distributions as well as to the Zipf--Mandelbrot Law for the Stock Market
Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 870-877.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of density of a finite set is introduced. We prove a general theorem of set theory which refines the Gibbs, Bose–Einstein, and Pareto distributions as well as the Zipf law.
@article{MZM_2005_78_6_a6,
     author = {V. P. Maslov},
     title = {On a {General} {Theorem} of {Set} {Theory} {Leading} to the {Gibbs,} {Bose--Einstein,} and {Pareto} {Distributions} as well as to the {Zipf--Mandelbrot} {Law} for the {Stock} {Market}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {870--877},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a6/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - On a General Theorem of Set Theory Leading to the Gibbs, Bose--Einstein, and Pareto Distributions as well as to the Zipf--Mandelbrot Law for the Stock Market
JO  - Matematičeskie zametki
PY  - 2005
SP  - 870
EP  - 877
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a6/
LA  - ru
ID  - MZM_2005_78_6_a6
ER  - 
%0 Journal Article
%A V. P. Maslov
%T On a General Theorem of Set Theory Leading to the Gibbs, Bose--Einstein, and Pareto Distributions as well as to the Zipf--Mandelbrot Law for the Stock Market
%J Matematičeskie zametki
%D 2005
%P 870-877
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a6/
%G ru
%F MZM_2005_78_6_a6
V. P. Maslov. On a General Theorem of Set Theory Leading to the Gibbs, Bose--Einstein, and Pareto Distributions as well as to the Zipf--Mandelbrot Law for the Stock Market. Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 870-877. http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a6/

[1] Gurevich V., Volmen G., Teoriya razmernostei, M., 1948

[2] Maslov V. P., “Nelineinoe srednee v ekonomike”, Matem. zametki, 78:3 (2005), 377–395 | MR | Zbl

[3] Maslov V. P., “Zakon bolshikh uklonenii v teorii chisel. Vychislimaya funktsiya ot mnogikh argumentov i dekodirovanie”, Dokl. RAN, 404:6 (2005), 731–736 | MR

[4] Koval G. V., Maslov V. P., “Ob otsenkakh dlya bolshoi statisticheskoi summy” (to appear)

[5] Mandelbrot B., “Structure formelle des textes et communication”, Word, 10 (1), New York, 1954

[6] Maslov V. P., “Printsip vozrastaniya slozhnosti formirovanii portfelya na fondovoi birzhe”, Dokl. RAN, 404:4 (2005), 446–450 | MR

[7] Maslov V. P., “Utochnenie zakona Tsipfa dlya chastotnykh slovarei i fondovoi birzhi”, Dokl. RAN, 405:5 (2005), 591–594 | MR