On the Cardinality of the Family of Precomplete Classes in~$P_E$
Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 864-869
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $E$ be an infinite set of cardinality $\mathbf m$, and let $P_E$ be the set of all functions defined on $E$. We prove that the cardinality of the family of all classes precomplete in $P_E$ is equal to $2^{2^{\mathbf m}}$. If $C_{\mathbb R}$ is the set of all continuous functions of real variables, then the cardinality of the family of all classes precomplete in $C_{\mathbb R}$ is equal to $2^{2^{\aleph_0}}$.
@article{MZM_2005_78_6_a5,
author = {S. S. Marchenkov},
title = {On the {Cardinality} of the {Family} of {Precomplete} {Classes} in~$P_E$},
journal = {Matemati\v{c}eskie zametki},
pages = {864--869},
publisher = {mathdoc},
volume = {78},
number = {6},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a5/}
}
S. S. Marchenkov. On the Cardinality of the Family of Precomplete Classes in~$P_E$. Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 864-869. http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a5/