On the Cardinality of the Family of Precomplete Classes in~$P_E$
Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 864-869

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be an infinite set of cardinality $\mathbf m$, and let $P_E$ be the set of all functions defined on $E$. We prove that the cardinality of the family of all classes precomplete in $P_E$ is equal to $2^{2^{\mathbf m}}$. If $C_{\mathbb R}$ is the set of all continuous functions of real variables, then the cardinality of the family of all classes precomplete in $C_{\mathbb R}$ is equal to $2^{2^{\aleph_0}}$.
@article{MZM_2005_78_6_a5,
     author = {S. S. Marchenkov},
     title = {On the {Cardinality} of the {Family} of {Precomplete} {Classes} in~$P_E$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {864--869},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a5/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - On the Cardinality of the Family of Precomplete Classes in~$P_E$
JO  - Matematičeskie zametki
PY  - 2005
SP  - 864
EP  - 869
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a5/
LA  - ru
ID  - MZM_2005_78_6_a5
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T On the Cardinality of the Family of Precomplete Classes in~$P_E$
%J Matematičeskie zametki
%D 2005
%P 864-869
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a5/
%G ru
%F MZM_2005_78_6_a5
S. S. Marchenkov. On the Cardinality of the Family of Precomplete Classes in~$P_E$. Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 864-869. http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a5/