The Cohomology of Pro-$p$-Groups with Group Ring Coefficients and Virtual Poincare Duality
Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 853-863
Cet article a éte moissonné depuis la source Math-Net.Ru
The relationship between the group-theoretic properties of a pro-$p$-group $G$ and the $G$-module structure of the group $H^n(G,\mathbb F_q[[G]])$ is studied. A necessary and sufficient condition for a pro-$p$-group $G$ to contain an open Poincare subgroup of dimension $n$ is obtained. This condition does not require that $G$ have finite cohomological dimension and, therefore, applies to groups with torsion. Results concerning the possible values of $\dim_{\mathbb F_p}H^n(G,\mathbb F_p[[G]])$ are also obtained.
@article{MZM_2005_78_6_a4,
author = {A. A. Korenev},
title = {The {Cohomology} of {Pro-}$p${-Groups} with {Group} {Ring} {Coefficients} and {Virtual} {Poincare} {Duality}},
journal = {Matemati\v{c}eskie zametki},
pages = {853--863},
year = {2005},
volume = {78},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a4/}
}
A. A. Korenev. The Cohomology of Pro-$p$-Groups with Group Ring Coefficients and Virtual Poincare Duality. Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 853-863. http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a4/
[1] Serr Zh.-P., Kogomologii Galua, Mir, M., 1968 | MR
[2] Korenev A. A., “Pro-$p$-gruppy s konechnym chislom kontsov”, Matem. zametki, 76:4 (2004), 531–538
[3] Farrel F. T., “Poincaré duality and groups of type (FP)”, Comm. Math. Helvet., 50 (1975), 187–195 | DOI | MR | Zbl
[4] Johnson F. E. A., Wall C. T. C., “On groups satisfying Poincaré duality”, Ann. of Math., 96 (1972), 592–598 | DOI | Zbl
[5] Pletch A., “Profinite duality groups, I”, J. Pure Appl. Algebra, 16 (1980), 55–74 | DOI | MR | Zbl
[6] Stinrod N., Eilenberg S., Osnovaniya algebraicheskoi topologii, FM, M., 1958
[7] Melnikov O. V., “Faktor-gruppy prokonechnykh grupp s dvoistvennostyu Puankare”, Vesti AN Belarusi. Ser. fiz.-matem. nauk, 1996, no. 3, 54–58 | MR