Damped Oscillatory Integrals and Maximal Operators
Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 833-852.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we consider estimates of the Fourier transform of Borel measures concentrated on analytic hypersurfaces and containing a mitigating factor. The mitigating factors are expressed in terms of principal curvatures of the surface. The resulting estimates are applied to investigating the boundedness of the corresponding maximal operators.
@article{MZM_2005_78_6_a3,
     author = {I. A. Ikromov},
     title = {Damped {Oscillatory} {Integrals} and {Maximal} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {833--852},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a3/}
}
TY  - JOUR
AU  - I. A. Ikromov
TI  - Damped Oscillatory Integrals and Maximal Operators
JO  - Matematičeskie zametki
PY  - 2005
SP  - 833
EP  - 852
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a3/
LA  - ru
ID  - MZM_2005_78_6_a3
ER  - 
%0 Journal Article
%A I. A. Ikromov
%T Damped Oscillatory Integrals and Maximal Operators
%J Matematičeskie zametki
%D 2005
%P 833-852
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a3/
%G ru
%F MZM_2005_78_6_a3
I. A. Ikromov. Damped Oscillatory Integrals and Maximal Operators. Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 833-852. http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a3/

[1] Stein E. M., “Maximal functions: spherical means”, Proc. Nat. Acad. Sci. USA, 73 (1976), 2174–2175 | DOI | MR | Zbl

[2] Bourgain J., “Averages in the plane convex curves and maximal operators”, J. Anal. Math., 47 (1986), 69–85 | DOI | Zbl

[3] Sogge C. D., Stein E. M., “Averages of functions over hypersurfaces in $\mathbb R^n$”, Invent. Math., 82 (1985), 543–556 | DOI | MR | Zbl

[4] Stein E. M., Harmonic Analysis: Real-Valued Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993 | Zbl

[5] Greenleaf A., “Principal curvature and harmonic analysis”, Indiana Math. J., 30 (1982), 519–537 | DOI | MR

[6] Sogge C. D., “Averaging operators with one non-vanishing principal curvature”, Fourier Analysis and Partial Differential Equations, Stud. Adv. Math., 22, 1995, 317–323 | MR

[7] Cowling M., Mauceri G., “Inequalities for maximal functions, II”, Trans. Amer. Math. Soc., 296 (1986), 341–365 | DOI | MR | Zbl

[8] Cowling M., Mauceri G., “Oscillatory integrals and Fourier transforms of surface carried measures”, Trans. Amer. Math. Soc., 304:1 (1987), 53–68 | DOI | Zbl

[9] Iosevich A., “Maximal operators associated to families of flat curves in the plane”, Duke Math. J., 76 (1995), 631–644 | MR

[10] Iosevich A., Sawyer E., “Maximal operators over convex hypersurfaces”, Adv. in Math., 132:1 (1997), 46–119 | DOI | Zbl

[11] Arnold V. I., Varchenko A. N., Gusein-zade S. M., Osobennosti differentsiruemykh otobrazhenii. Ch. 1. Klassifikatsiya kriticheskikh tochek kaustik i volnovykh frontov, Nauka, M., 1982

[12] Varchenko A. N., “Mnogogranniki Nyutona i otsenki ostsilliruyuschikh integralov”, Funktsion. analiz i ego prilozh., 10:3 (1976), 13–38 | Zbl

[13] Karpushkin V. N., “Teorema o ravnomernoi otsenke ostsilliruyuschikh integralov s fazoi, zavisyaschei ot dvukh peremennykh”, Tr. sem. im. I. G. Petrovskogo, 10, Izd-vo Mosk. un-ta, M., 1984, 150–169 | Zbl

[14] Cowling M., Disney S., Mauceri G., Müller D., “Damping oscillatory integrals”, Invent. Math., 101 (1990), 237–260 | DOI | Zbl

[15] Ikromov I. A., Damped oscillatory integrals and boundedness problem for maximal operators, Preprint IC/2003/43, ICTP Trieste, Italy, 2003

[16] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1986

[17] Hartman P., Nirenberg L., “On spherical image maps whose Jacobians do not change sign”, Amer. J. Math., 81 (1959), 901–920 | DOI | Zbl

[18] Malgrange B., Ideals of Differentiale Functions, Oxford Univ. Press, Oxford, 1966 | Zbl

[19] Hironaka H., “Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II”, Ann. of Math., 79:2 (1964), 109–326 | DOI | Zbl

[20] Duistermaat J., “Oscillatory integrals, Lagrange immersions and unfolding of singularities”, Comm. Pure Appl. Math., 27:2 (1974), 207–281 | DOI | Zbl

[21] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., “Trigonometricheskie integraly”, Izv. AN SSSR. Ser. matem., 43:5 (1979), 971–1003 | Zbl

[22] Carbery A., Christ M., Wright J., “Multidimensional van der Corput lemma and sublevel set estimates”, J. Amer. Math. Soc., 12:4 (1999), 981–1015 | DOI | Zbl

[23] Fedoryuk M. V., Metod perevala, Nauka, M., 1977

[24] Popov D. A., “Otsenki s konstantami dlya nekotorykh klassov ostsilliruyuschikh integralov”, UMN, 52:1 (1997), 77–148 | Zbl

[25] Van der Corput J. G., “Zahlentheoretische Abschätzungen”, Math. Ann., 84 (1921), 53–79 | DOI