Polynomials with Critical Values on Intervals
Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 827-832.

Voir la notice de l'article provenant de la source Math-Net.Ru

For polynomials $P(z)$ with real coefficients having a fixed leading coefficient and satisfying the conditions $P(z)\in[-1,1]$ for $z\in[-1,1]$ and $P(z)\in[-1,1]$ if $P'(z)=0$, we obtain new covering theorems, a Bernshtein-type inequality, and inequalities for the coefficients. The proofs are based on the use of univalent conformal mappings.
@article{MZM_2005_78_6_a2,
     author = {V. N. Dubinin},
     title = {Polynomials with {Critical} {Values} on {Intervals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {827--832},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a2/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Polynomials with Critical Values on Intervals
JO  - Matematičeskie zametki
PY  - 2005
SP  - 827
EP  - 832
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a2/
LA  - ru
ID  - MZM_2005_78_6_a2
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Polynomials with Critical Values on Intervals
%J Matematičeskie zametki
%D 2005
%P 827-832
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a2/
%G ru
%F MZM_2005_78_6_a2
V. N. Dubinin. Polynomials with Critical Values on Intervals. Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 827-832. http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a2/

[1] Milovanovic G. V., Mitrinovic D. S., Rassias Th. M., Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific Publ., Singapore, 1994 | MR

[2] Borwein P., Erdelyi T., Polynomials and Polynomial Inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995 | MR

[3] Govil N. K., Mahapatra R. N., “Markov and Bernstein type inequalities for polynomials”, J. Inequal. Appl., 3 (1999), 349–387 | DOI | Zbl

[4] Dubinin V. N., “Konformnye otobrazheniya i neravenstva dlya algebraicheskikh polinomov”, Algebra i analiz, 13:5 (2001), 16–43 | MR | Zbl

[5] Goodman A. W., Univalent Functions, V. I, II, Mariner Publ. Comp., Tampa, 1983

[6] Dochev K., “O nekotorykh ekstremalnykh svoistvakh mnogochlenov”, Dokl. AN SSSR, 153:3 (1963), 519–521 | Zbl

[7] Pommerenke Ch., Vasil'ev A., “On bounded univalent functions and the angular derivative”, Ann. Univ. Maria Curie-Sklodowska. Ser. A, 8 (2000), 79–106

[8] Pommerenke Ch., Vasil'ev A., “Angular derivatives of bounded univalent functions and extremal partitions of the unit disk”, Pacific J. Math., 206:2 (2002), 425–450 | Zbl

[9] Siejka H., Tammi O., “On estimating the inverse coefficients for meromorphic univalent functions omitting a disc”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 12 (1987), 85–93 | Zbl