Poincare Theorem for Difference Equations
Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 943-947.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2005_78_6_a13,
     author = {V. I. Buslaev and S. F. Buslaeva},
     title = {Poincare {Theorem} for {Difference} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {943--947},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a13/}
}
TY  - JOUR
AU  - V. I. Buslaev
AU  - S. F. Buslaeva
TI  - Poincare Theorem for Difference Equations
JO  - Matematičeskie zametki
PY  - 2005
SP  - 943
EP  - 947
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a13/
LA  - ru
ID  - MZM_2005_78_6_a13
ER  - 
%0 Journal Article
%A V. I. Buslaev
%A S. F. Buslaeva
%T Poincare Theorem for Difference Equations
%J Matematičeskie zametki
%D 2005
%P 943-947
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a13/
%G ru
%F MZM_2005_78_6_a13
V. I. Buslaev; S. F. Buslaeva. Poincare Theorem for Difference Equations. Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 943-947. http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a13/

[1] Poincaré H., Amer. J. Math., 7 (1885), 203–258 | DOI | MR

[2] Perron O., J. Reine Angew. Math., 136 (1909), 17–37; 137 (1910), 6–64

[3] Van Vleck E. V., Trans. Amer. Math. Soc., 5 (1904), 253–262 | DOI | MR

[4] Buslaev V. I., Matem. sb., 131 (173):3 (11) (1986), 357–384 | MR | Zbl

[5] de Montessus de Ballore R., Bull. Soc. Math. France, 30 (1902), 28–36 | MR

[6] Gonchar A. A., Matem. sb., 115 (157):4 (1981), 590–613 | MR | Zbl