Stochastic Schr\"odinger Equation for a Quantum Oscillator with Dissipation
Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 934-940.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct an exact solution of the stochastic Schrödinger equation for a quantum oscillator with possible dissipation of energy taken into account. Using the explicit form of the solution, we calculate estimates for the characteristic damping time of free damped oscillations. In the case of forced oscillations, we obtain formulas for the Q-factor of the system and for the variance of the coordinate and momentum of a quantum oscillator with dissipation. We obtain the quantum analog of the classical diffusion equation and explicitly show that the equations of motion for the mean value of the momentum operator following from the solution of the stochastic Schrödinger equation play the role of the quantum Langevin equation describing Brownian motion under the action of a stochastic force.
@article{MZM_2005_78_6_a11,
     author = {A. V. Churkin},
     title = {Stochastic {Schr\"odinger} {Equation} for a {Quantum} {Oscillator} with {Dissipation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {934--940},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a11/}
}
TY  - JOUR
AU  - A. V. Churkin
TI  - Stochastic Schr\"odinger Equation for a Quantum Oscillator with Dissipation
JO  - Matematičeskie zametki
PY  - 2005
SP  - 934
EP  - 940
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a11/
LA  - ru
ID  - MZM_2005_78_6_a11
ER  - 
%0 Journal Article
%A A. V. Churkin
%T Stochastic Schr\"odinger Equation for a Quantum Oscillator with Dissipation
%J Matematičeskie zametki
%D 2005
%P 934-940
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a11/
%G ru
%F MZM_2005_78_6_a11
A. V. Churkin. Stochastic Schr\"odinger Equation for a Quantum Oscillator with Dissipation. Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 934-940. http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a11/

[1] Davies E. B., Quantum Theory of Open Systems, Academic Press, London, 1976 | MR

[2] Barchielli A., Belavkin V. P., “Measurement continuous in time and a posteriori states in quantum mechanics”, J. Phys. A. Math. Gen., 24 (1991), 1495–1514 | DOI | MR

[3] Englert B. G., Morigi G., “Five lectures on dissipative master equation”, Lecture Notes in Phys., 611, 2002, 55–106

[4] Ozawa M., “Operations, disturbance, and simultaneous measurability”, Phys. Rev. A, 62 (2000), 062101 | DOI | MR

[5] Zurek W. H., “Decoherence, einselection and the quantum origins of the classical”, Rev. Mod. Phys., 75 (2003), 715 ; , 2001 E-print quant-ph/0105127 | DOI

[6] Isar A., Damped quantum harmonic oscillator: density operator and related quantities, , 1994 E-print hep-th/9406142

[7] Isar A., “Uncertainty, entropy and decoherence of the damped harmonic oscillator in the Lindblad theory of open quantum systems”, Fortschritte der Physik, 47 (1999), 855–879 | 3.0.CO;2-Z class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[8] Belavkin V. P., “Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes”, Lecture Notes in Control and Information, 121, Springer, Berlin, 1988, 245–265

[9] Belavkin V. P., “A stochastic posterior Schrödinger equation for counting nondemolition measurement”, Lett. Math. Phys., 20 (1990), 85–89 | DOI | Zbl

[10] Churkin A. V., “Tochno reshaemaya zadacha dlya stokhasticheskogo uravneniya Shredingera v dvumernom sluchae”, Matem. zametki, 69:5 (2001), 740–750 | Zbl