On Surface Attractors and Repellers in 3-Manifolds
Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 813-826

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if $f\colon M^3\to M^3$ is an $A$ diffeomorphism with a surface two-dimensional attractor or repeller $\mathscr B$ with support $M^2_{\mathscr B}$, then $\mathscr B=M^2_{\mathscr B}$ and there exists a $k\ge1$ such that 1) $M^2_{\mathscr B}$ is the disjoint union $M^2_1\cup\dots\cup M^2_k$ of tame surfaces such that each surface $M^2_i$ is homeomorphic to the 2-torus $T^2$; 2) the restriction of $f^k$ to $M^2_i$, $i\in\{1,\dots,k\}$, is conjugate to an Anosov diffeomorphism of the torus $T^2$.
@article{MZM_2005_78_6_a1,
     author = {V. Z. Grines and V. S. Medvedev and E. V. Zhuzhoma},
     title = {On {Surface} {Attractors} and {Repellers} in {3-Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {813--826},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a1/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - V. S. Medvedev
AU  - E. V. Zhuzhoma
TI  - On Surface Attractors and Repellers in 3-Manifolds
JO  - Matematičeskie zametki
PY  - 2005
SP  - 813
EP  - 826
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a1/
LA  - ru
ID  - MZM_2005_78_6_a1
ER  - 
%0 Journal Article
%A V. Z. Grines
%A V. S. Medvedev
%A E. V. Zhuzhoma
%T On Surface Attractors and Repellers in 3-Manifolds
%J Matematičeskie zametki
%D 2005
%P 813-826
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a1/
%G ru
%F MZM_2005_78_6_a1
V. Z. Grines; V. S. Medvedev; E. V. Zhuzhoma. On Surface Attractors and Repellers in 3-Manifolds. Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 813-826. http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a1/