On Surface Attractors and Repellers in 3-Manifolds
Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 813-826.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if $f\colon M^3\to M^3$ is an $A$ diffeomorphism with a surface two-dimensional attractor or repeller $\mathscr B$ with support $M^2_{\mathscr B}$, then $\mathscr B=M^2_{\mathscr B}$ and there exists a $k\ge1$ such that 1) $M^2_{\mathscr B}$ is the disjoint union $M^2_1\cup\dots\cup M^2_k$ of tame surfaces such that each surface $M^2_i$ is homeomorphic to the 2-torus $T^2$; 2) the restriction of $f^k$ to $M^2_i$, $i\in\{1,\dots,k\}$, is conjugate to an Anosov diffeomorphism of the torus $T^2$.
@article{MZM_2005_78_6_a1,
     author = {V. Z. Grines and V. S. Medvedev and E. V. Zhuzhoma},
     title = {On {Surface} {Attractors} and {Repellers} in {3-Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {813--826},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a1/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - V. S. Medvedev
AU  - E. V. Zhuzhoma
TI  - On Surface Attractors and Repellers in 3-Manifolds
JO  - Matematičeskie zametki
PY  - 2005
SP  - 813
EP  - 826
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a1/
LA  - ru
ID  - MZM_2005_78_6_a1
ER  - 
%0 Journal Article
%A V. Z. Grines
%A V. S. Medvedev
%A E. V. Zhuzhoma
%T On Surface Attractors and Repellers in 3-Manifolds
%J Matematičeskie zametki
%D 2005
%P 813-826
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a1/
%G ru
%F MZM_2005_78_6_a1
V. Z. Grines; V. S. Medvedev; E. V. Zhuzhoma. On Surface Attractors and Repellers in 3-Manifolds. Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 813-826. http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a1/

[1] Franks J., “Anosov diffeomorphisms”, Global Analysis, Proc. of Symposia in Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 61–94 | MR

[2] Newhouse S., “On codimension one Anosov diffeomorphisms”, Amer. J. Math., 92:3 (1970), 761–770 | DOI | MR | Zbl

[3] Hiraide K., “A simple proof of the Franks–Newhouse theorem on codimension one Anosov diffeomorphisms”, Ergodic Theory Dynamical Systems, 21 (2001), 801–806 | DOI | MR | Zbl

[4] Grines V., Zhuzhoma E., “On structurally stable diffeomorphisms with codimension one expanding attractors”, Trans. Amer. Math. Soc., 357:2 (2005), 617–667 | DOI | MR | Zbl

[5] Grines V. Z., Zhuzhoma E. V., “O grubykh diffeomorfizmakh s rastyagivayuschimisya attraktorami i szhimayuschimisya repellerami korazmernosti odin”, Dokl. RAN, 374:6 (2000), 735–737 | MR | Zbl

[6] Katok A., Hasselblatt B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Math. and its Applications, 54, Cambridge Univ. Press, Cambridge, 1994 | Zbl

[7] Robinson C., Dynamical Systems, Stability, Symbolic Dynamics, and Chaos, 2nd edition, CRC Press, Boca Raton, FL, 1999 | MR | Zbl

[8] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:1 (1967), 741–817

[9] Abraham R., Smale S., “Nongenericity of $\Omega$-stability”, Global Analysis, Proc. of Symposia in Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 5–8

[10] Williams R. F., “One-dimensional non-wandering sets”, Topology, 6 (1967), 473–487 | DOI | Zbl

[11] Pesin Y., Dimension Theory in Dynamical Systems, Contemporary Views and Applications, Univ. of Chicago Press, Chicago, 1997

[12] Shub M., Sullivan D., “Homology theory and dynamical systems”, Topology, 14 (1975), 109–132 | DOI | Zbl

[13] Bothe H., The ambient structure of $1$-dimensional hyperbolic structure in $3$-manifolds, 81, Inst. Math., Akad. Wissensch. DDR, Berlin, 1981

[14] Jiang B., Ni Y., Wang S., “3-manifolds that admit knotted solenoids as attractors”, Trans. Amer. Math. Soc., 356:11 (2004), 4371–4382 | DOI | Zbl

[15] Hempel J., 3-Manifolds, Ann. of Math. Studies, 86, Princeton Univ. Press, Princeton, NJ, 1976 | Zbl

[16] Plykin R. V., “O topologii bazisnykh mnozhestv diffeomorfizmov S. Smeila”, Matem. sb., 84:2 (1971), 301–312 | Zbl

[17] Williams R. F., “Expanding attractors”, Publ. Math. IHES, 43 (1974), 169–203

[18] Kaplan J., Mallet-Paret J., Yorke J., “The Lyapunov dimension of nowhere differentiable attracting torus”, Ergodic Theory Dynamical Systems, 4:2 (1984), 261–281 | Zbl

[19] Pixton D., “Wild unstable manifolds”, Topology, 16 (1977), 167–172 | DOI | Zbl

[20] Bonatti C., Grines V., “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynamical Control Systems, 6:4 (2000), 579–602 | DOI | Zbl

[21] Anosov D. V., “Ob odnom klasse invariantnykh mnozhestv gladkikh dinamicheskikh sistem”, Kachestvennye metody, Tr. 5-i Mezhdunar. konf. po nelineinym kolebaniyam. T. 2, Kiev, 1970, 39–45 | Zbl

[22] Bowen R., “Periodic points and measures for axiom $A$-diffeomorphisms”, Trans. Amer. Math. Soc., 154 (1971), 377–397 | DOI | Zbl

[23] Hurewicz W., Wallman H., Dimension Theory, Princeton Univ. Press, Princeton, NJ, 1984

[24] Moise Ed. E., Geometric Topology in Dimensions $2$ and $3$, Graduate Texts in Math., 47, Springer-Verlag, New York–Heidelberg, 1977 | Zbl

[25] Engelking R., General Topology, Helderman-Verlag, Berlin, 1989 | Zbl

[26] Knezer H., “Regulare Kurvenscharen auf Ringflachen”, Math. Ann., 91 (1924), 135–154 | DOI

[27] Aranson S., Grines V., Kaimanovich V., “Classification of supertransitive $2$-webs on surfaces”, J. Dynamical Control Systems, 9:4 (2003), 455–468 | DOI | Zbl

[28] Franks J., “Anosov diffeomorphisms on tori”, Trans. Amer. Math. Soc., 145 (1969), 117–124 | DOI