Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_78_5_a8, author = {M. A. Prikhod'ko}, title = {Asymptotics of {Information} {Entropy} for the {Two-Dimensional} {Analog} of the {Relativistic} {Hydrogen} {Atom} in the {Kozlov--Nikishin} {Model}}, journal = {Matemati\v{c}eskie zametki}, pages = {727--744}, publisher = {mathdoc}, volume = {78}, number = {5}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a8/} }
TY - JOUR AU - M. A. Prikhod'ko TI - Asymptotics of Information Entropy for the Two-Dimensional Analog of the Relativistic Hydrogen Atom in the Kozlov--Nikishin Model JO - Matematičeskie zametki PY - 2005 SP - 727 EP - 744 VL - 78 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a8/ LA - ru ID - MZM_2005_78_5_a8 ER -
%0 Journal Article %A M. A. Prikhod'ko %T Asymptotics of Information Entropy for the Two-Dimensional Analog of the Relativistic Hydrogen Atom in the Kozlov--Nikishin Model %J Matematičeskie zametki %D 2005 %P 727-744 %V 78 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a8/ %G ru %F MZM_2005_78_5_a8
M. A. Prikhod'ko. Asymptotics of Information Entropy for the Two-Dimensional Analog of the Relativistic Hydrogen Atom in the Kozlov--Nikishin Model. Matematičeskie zametki, Tome 78 (2005) no. 5, pp. 727-744. http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a8/
[1] Bialynicki-Birula I., Mycielski J., “Uncertainty relations for information entropy in wave mechanics”, Cumm. Math. Phys., 44 (1975), 129–132 | DOI | MR
[2] Dehesa J. S., Yáñez R. J., Aptekarev A. I., Buyarov V., “Strong asymptotics of Laguerre polynomials and information entropies of two-dimensional harmonic oscillator and one-dimensional Coulomb potentials”, J. Math. Phys., 39:6 (1998), 3050–3060 | DOI | MR | Zbl
[3] Yáñez R. J., Van Assche W., Dehesa J. S., “Position and momentum information entropies of the $D$-dimensional harmonic oscillator and hydrogen atom”, Phys. Rev. A, 50 (1994), 3065–3079 | DOI
[4] Dehesa J. S., Martinez-Finkelshtein A., Sorokin V. N., “Quantum-information entropies for highly excited states of single-particle systems with power-type potentials”, Phys. Rev. A, 66 (2002), 2109 | DOI
[5] Dehesa J. S., Martinez-Finkelshtein A., Sorokin V. N., “Asymptotics of information entropies of some Toda-like potentials”, J. Math. Phys., 44:1 (2003), 36–47 | DOI | MR | Zbl
[6] Kozlov V. V., Nikishin E. M., “Relyativistskii variant gamiltonova formalizma i volnovye funktsii vodorodopodobnogo atoma”, Vestn. MGU. Ser. 1. Matem., mekh., 1986, no. 5, 11–20 | Zbl
[7] Kozlov V. V., “Relyativistskaya zadacha mnogikh tel i ee kvantovanie”, Izbrannye voprosy matematicheskogo analiza, Doklady po matematike i ee prilozheniyam, 3, no. 1, ed. E. M. Nikishin, M.–Tula, 1990, 430–431
[8] Fok V. A., Raboty po kvantovoi teorii polya, Izd-vo Leningr. un-ta, L., 1957
[9] Flyugge Z., Zadachi po kvantovoi mekhanike, Mir, M., 1974
[10] Nikiforov A. F., Uvarov V. B., Spetsialnye funktsii matematicheskoi fiziki, 2-e izd., Nauka, M., 1984
[11] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Nauka, M., 1965
[12] Aptekarev A. I., Buyarov V. S., Degeza Kh. S., “Asimptoticheskoe povedenie $L^p$-norm i entropii dlya obschikh ortogonalnykh mnogochlenov”, Matem. sb., 185:8 (1994), 3–30 | MR | Zbl