Asymptotics of Information Entropy for the Two-Dimensional Analog of the Relativistic Hydrogen Atom in the Kozlov--Nikishin Model
Matematičeskie zametki, Tome 78 (2005) no. 5, pp. 727-744.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the two-dimensional Lorentz-invariant model of the hydrogen atom, we obtain wave functions of bound states in coordinate representation and, for nonexcited (in time) states, also in momentum representation. For such states, the short-wave asymptotics of the information entropy is studied.
@article{MZM_2005_78_5_a8,
     author = {M. A. Prikhod'ko},
     title = {Asymptotics of {Information} {Entropy} for the {Two-Dimensional} {Analog} of the {Relativistic} {Hydrogen} {Atom} in the {Kozlov--Nikishin} {Model}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {727--744},
     publisher = {mathdoc},
     volume = {78},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a8/}
}
TY  - JOUR
AU  - M. A. Prikhod'ko
TI  - Asymptotics of Information Entropy for the Two-Dimensional Analog of the Relativistic Hydrogen Atom in the Kozlov--Nikishin Model
JO  - Matematičeskie zametki
PY  - 2005
SP  - 727
EP  - 744
VL  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a8/
LA  - ru
ID  - MZM_2005_78_5_a8
ER  - 
%0 Journal Article
%A M. A. Prikhod'ko
%T Asymptotics of Information Entropy for the Two-Dimensional Analog of the Relativistic Hydrogen Atom in the Kozlov--Nikishin Model
%J Matematičeskie zametki
%D 2005
%P 727-744
%V 78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a8/
%G ru
%F MZM_2005_78_5_a8
M. A. Prikhod'ko. Asymptotics of Information Entropy for the Two-Dimensional Analog of the Relativistic Hydrogen Atom in the Kozlov--Nikishin Model. Matematičeskie zametki, Tome 78 (2005) no. 5, pp. 727-744. http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a8/

[1] Bialynicki-Birula I., Mycielski J., “Uncertainty relations for information entropy in wave mechanics”, Cumm. Math. Phys., 44 (1975), 129–132 | DOI | MR

[2] Dehesa J. S., Yáñez R. J., Aptekarev A. I., Buyarov V., “Strong asymptotics of Laguerre polynomials and information entropies of two-dimensional harmonic oscillator and one-dimensional Coulomb potentials”, J. Math. Phys., 39:6 (1998), 3050–3060 | DOI | MR | Zbl

[3] Yáñez R. J., Van Assche W., Dehesa J. S., “Position and momentum information entropies of the $D$-dimensional harmonic oscillator and hydrogen atom”, Phys. Rev. A, 50 (1994), 3065–3079 | DOI

[4] Dehesa J. S., Martinez-Finkelshtein A., Sorokin V. N., “Quantum-information entropies for highly excited states of single-particle systems with power-type potentials”, Phys. Rev. A, 66 (2002), 2109 | DOI

[5] Dehesa J. S., Martinez-Finkelshtein A., Sorokin V. N., “Asymptotics of information entropies of some Toda-like potentials”, J. Math. Phys., 44:1 (2003), 36–47 | DOI | MR | Zbl

[6] Kozlov V. V., Nikishin E. M., “Relyativistskii variant gamiltonova formalizma i volnovye funktsii vodorodopodobnogo atoma”, Vestn. MGU. Ser. 1. Matem., mekh., 1986, no. 5, 11–20 | Zbl

[7] Kozlov V. V., “Relyativistskaya zadacha mnogikh tel i ee kvantovanie”, Izbrannye voprosy matematicheskogo analiza, Doklady po matematike i ee prilozheniyam, 3, no. 1, ed. E. M. Nikishin, M.–Tula, 1990, 430–431

[8] Fok V. A., Raboty po kvantovoi teorii polya, Izd-vo Leningr. un-ta, L., 1957

[9] Flyugge Z., Zadachi po kvantovoi mekhanike, Mir, M., 1974

[10] Nikiforov A. F., Uvarov V. B., Spetsialnye funktsii matematicheskoi fiziki, 2-e izd., Nauka, M., 1984

[11] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Nauka, M., 1965

[12] Aptekarev A. I., Buyarov V. S., Degeza Kh. S., “Asimptoticheskoe povedenie $L^p$-norm i entropii dlya obschikh ortogonalnykh mnogochlenov”, Matem. sb., 185:8 (1994), 3–30 | MR | Zbl