Integral Criteria for the Quality of the Dichotomy of a Matrix Spectrum by a Closed Contour
Matematičeskie zametki, Tome 78 (2005) no. 5, pp. 718-726.

Voir la notice de l'article provenant de la source Math-Net.Ru

A well-known method for estimating the sensitivity of invariant projection operators, which is based on the dichotomy quality integral criteria and is oriented to perturbations of general form, is extended to the case of regularly structured perturbations. For finite-dimensional approximations of differential operators, this allows us, in particular, to obtain significantly more precise estimates of the sensitivity of invariant projection operators (corresponding to the eigenvalues minimal in absolute value) to perturbations of the coefficients of these operators. We give a new definition of the dichotomy quality integral criteria as the $L_p$ -norm of the resolvent, which allows us to simplify the proofs and to formulate the final results in a more general and simpler form.
@article{MZM_2005_78_5_a7,
     author = {Yu. M. Nechepurenko},
     title = {Integral {Criteria} for the {Quality} of the {Dichotomy} of a {Matrix} {Spectrum} by a {Closed} {Contour}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {718--726},
     publisher = {mathdoc},
     volume = {78},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a7/}
}
TY  - JOUR
AU  - Yu. M. Nechepurenko
TI  - Integral Criteria for the Quality of the Dichotomy of a Matrix Spectrum by a Closed Contour
JO  - Matematičeskie zametki
PY  - 2005
SP  - 718
EP  - 726
VL  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a7/
LA  - ru
ID  - MZM_2005_78_5_a7
ER  - 
%0 Journal Article
%A Yu. M. Nechepurenko
%T Integral Criteria for the Quality of the Dichotomy of a Matrix Spectrum by a Closed Contour
%J Matematičeskie zametki
%D 2005
%P 718-726
%V 78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a7/
%G ru
%F MZM_2005_78_5_a7
Yu. M. Nechepurenko. Integral Criteria for the Quality of the Dichotomy of a Matrix Spectrum by a Closed Contour. Matematičeskie zametki, Tome 78 (2005) no. 5, pp. 718-726. http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a7/

[1] Godunov S. K., Sovremennye aspekty lineinoi algebry, Nauchnaya kniga, Novosibirsk, 1997

[2] Godunov S. K., Lektsii po sovremennym aspektam lineinoi algebry, Nauchnaya kniga, Novosibirsk, 2002

[3] Nechepurenko Yu. M., “O dikhotomii spektra matritsy zamknutym konturom”, Dokl. RAN, 397:4 (2004), 459–460

[4] Hinrichsen D., Kelb B., “Spectral value sets: a graphical tool for robustness analysis”, Systems Control Lett., 21 (1993), 127–136 | DOI | MR | Zbl

[5] Gallestay E., Hinrichsen D., Pritchard A. J., “Spectral value sets of closed linear operators”, Proc. Roy. Soc. London Ser. A, 456 (2000), 1397–1418 | DOI | MR

[6] Trefethen L. N., “Pseudospectra of linear operators”, SIAM Review, 39 (1997), 383–406 | DOI | MR | Zbl

[7] Nechepurenko Yu. M., “The regularly structured pseudospectrum”, Russ. J. Numer. Anal. Math. Modelling, 19:3 (2004), 265–268 | DOI | MR | Zbl