On $G$-Compactifications
Matematičeskie zametki, Tome 78 (2005) no. 5, pp. 695-709

Voir la notice de l'article provenant de la source Math-Net.Ru

The semilattice of $G$-compactifications of a $G$-Tikhonov space $X$ is studied. The question of what sets containing $X$ and contained in the maximal $G$-compactification $\beta_GX$ must be contained also in all other $G$-compactifications of $X$ is considered. Conditions for $\beta_GX$ to be the completion of the $G$-space $X$ with respect to a natural uniformity (proximity) on $X$ are obtained. Sufficient conditions for the existence of a smallest (minimal, unique) $G$-compactification of $X$ are given.
@article{MZM_2005_78_5_a5,
     author = {K. L. Kozlov and V. A. Chatyrko},
     title = {On $G${-Compactifications}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {695--709},
     publisher = {mathdoc},
     volume = {78},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a5/}
}
TY  - JOUR
AU  - K. L. Kozlov
AU  - V. A. Chatyrko
TI  - On $G$-Compactifications
JO  - Matematičeskie zametki
PY  - 2005
SP  - 695
EP  - 709
VL  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a5/
LA  - ru
ID  - MZM_2005_78_5_a5
ER  - 
%0 Journal Article
%A K. L. Kozlov
%A V. A. Chatyrko
%T On $G$-Compactifications
%J Matematičeskie zametki
%D 2005
%P 695-709
%V 78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a5/
%G ru
%F MZM_2005_78_5_a5
K. L. Kozlov; V. A. Chatyrko. On $G$-Compactifications. Matematičeskie zametki, Tome 78 (2005) no. 5, pp. 695-709. http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a5/