Calculation of the Accessibility Number and the Neighbor Integrity of a~Graph
Matematičeskie zametki, Tome 78 (2005) no. 5, pp. 676-686.

Voir la notice de l'article provenant de la source Math-Net.Ru

We calculate stability numbers of Butterfly and Omega networks used in computer science. We describe relations between the neighbor integrity and the accessibility number of these networks.
@article{MZM_2005_78_5_a3,
     author = {P. D\"undar and A. Ayta\c{c} and V. Ayta\c{c}},
     title = {Calculation of the {Accessibility} {Number} and the {Neighbor} {Integrity} of {a~Graph}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {676--686},
     publisher = {mathdoc},
     volume = {78},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a3/}
}
TY  - JOUR
AU  - P. Dündar
AU  - A. Aytaç
AU  - V. Aytaç
TI  - Calculation of the Accessibility Number and the Neighbor Integrity of a~Graph
JO  - Matematičeskie zametki
PY  - 2005
SP  - 676
EP  - 686
VL  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a3/
LA  - ru
ID  - MZM_2005_78_5_a3
ER  - 
%0 Journal Article
%A P. Dündar
%A A. Aytaç
%A V. Aytaç
%T Calculation of the Accessibility Number and the Neighbor Integrity of a~Graph
%J Matematičeskie zametki
%D 2005
%P 676-686
%V 78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a3/
%G ru
%F MZM_2005_78_5_a3
P. Dündar; A. Aytaç; V. Aytaç. Calculation of the Accessibility Number and the Neighbor Integrity of a~Graph. Matematičeskie zametki, Tome 78 (2005) no. 5, pp. 676-686. http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a3/

[1] Cozzens M. B., “Stability measures and data fusion networks”, Graph Theory Notes of Network, 26 (1994), 8–14

[2] Cozzens M. B., Wu S. Y., “Vertex neighbor-integrity of trees”, Ars Combinatoria, 43 (1996), 169–180 | MR

[3] Dündar P., “The neighbour-integrity of boolean graphs and its compounds”, Intern. J. Computer Math., 72 (1999), 441–447 | DOI | MR | Zbl

[4] Dündar P., “New notions in network reliability: stability numbers of sequential joined graphs”, Neural Network World, 5 (1999), 403–411

[5] Dündar P., Ozan A., “On the neighbour-integrity of sequential joined graphs”, Intern. J. Computer Math., 74 (2000), 45–52 | DOI | MR | Zbl

[6] Dündar P., “Accessibility number and the neighbour-integrity of generalised Petersen graphs”, Neural Network World, 2 (2001), 167–174

[7] Dündar P., “Stability measures of some static interconnection networks”, Intern. J. Computer Math., 76:4 (2001), 455–462 | DOI | MR | Zbl

[8] Chartrand G., Lesniak L., Graphs and Digraphs, Wadsworth Brooks, California, 1986 | Zbl

[9] Prather R. E., Discrete Mathematical Structures for Computer Science, Houghton Mifflin Comp., Boston, 1976 | MR

[10] Liaw S. C., Chang G. J., “Rabin numbers of Butterfly networks”, Discrete Math., 196 (1999), 219–227 | DOI | Zbl

[11] Kumar V., Grama A., Gupta A., Karpis G., Introduction to Parallel Computing, The Benjaming/Cumminngs Publ., Redwood City, CA, 1994