Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_78_5_a2, author = {Yu. K. Dem'yanovich}, title = {Embedded {Spaces} of {Trigonometric} {Splines} and {Their} {Wavelet} {Expansion}}, journal = {Matemati\v{c}eskie zametki}, pages = {658--675}, publisher = {mathdoc}, volume = {78}, number = {5}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a2/} }
Yu. K. Dem'yanovich. Embedded Spaces of Trigonometric Splines and Their Wavelet Expansion. Matematičeskie zametki, Tome 78 (2005) no. 5, pp. 658-675. http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a2/
[1] Daubechies I., Ten Lectures on Wavelets, CMBS-NSR Regional Conference Series in Appl. Math., 61, SIAM, Philadelphia, PA, 1992 | MR
[2] Jawerth B., Sweldens W., “An overview of wavelet based multiresolution analyses”, SIAM Rev., 36 (1994), 377–412 | DOI | MR | Zbl
[3] Novikov I. Ya., Stechkin S. B., “Osnovy teorii vspleskov”, UMN, 53:6 (1998), 53–128 | MR | Zbl
[4] Demyanovich Yu. K., “Kalibrovochnoe sootnoshenie dlya $B$-splainov na neravnomernoi setke”, Matem. modelirovanie, 13:9 (2001), 98–100 | MR
[5] Demyanovich Yu. K., “Vspleskovye razlozheniya v prostranstvakh splainov na neravnomernoi setke”, Dokl. RAN, 382:3 (2002), 313–316
[6] Bakhvalov N. S., “O skhodimosti odnogo relaksatsionnogo metoda pri estestvennykh ogranicheniyakh na ellipticheskii operator”, ZhVMiMF, 6:5 (1966), 861–883 | Zbl
[7] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980