Embedded Spaces of Trigonometric Splines and Their Wavelet Expansion
Matematičeskie zametki, Tome 78 (2005) no. 5, pp. 658-675.

Voir la notice de l'article provenant de la source Math-Net.Ru

With each infinite grid $X:\dots$ we associate the system of trigonometric splines $\{\mathfrak T_j^B\}$ of class $C^1(\alpha,\beta)$, the linear space $\mathscr T^B(X)\overset{\textrm{def}}=\{\tilde u\mid\tilde u=\sum_jc_j\mathfrak T_j^B\ \forall\,c_j\in\mathbb R^1\}$, and the functionals $g^{(i)}\in(C^1(\alpha,\beta))^*$ with the biorthogonality property: $\langle g^{(i)},\mathfrak T_j^B\rangle=\delta_{i,j}$ (here $\alpha\overset{\textrm{def}}=\lim_{j\to-\infty}x_j$, $\beta\overset{\textrm{def}}=\lim_{j\to+\infty}x_j$). For nested grids $\overline X\subset X$, we show that the corresponding spaces $\mathscr T^B(\overline X)\subset\mathscr T^B(X)$ are embedded in $\mathscr T^B(X)$ and obtain decomposition and reconstruction formulas for the spline-wavelet expansion $\mathscr T^B(X)=\mathscr T^B(\overline X)\dotplus W$ derived with the help of the system of functionals indicated above.
@article{MZM_2005_78_5_a2,
     author = {Yu. K. Dem'yanovich},
     title = {Embedded {Spaces} of {Trigonometric} {Splines} and {Their} {Wavelet} {Expansion}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {658--675},
     publisher = {mathdoc},
     volume = {78},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a2/}
}
TY  - JOUR
AU  - Yu. K. Dem'yanovich
TI  - Embedded Spaces of Trigonometric Splines and Their Wavelet Expansion
JO  - Matematičeskie zametki
PY  - 2005
SP  - 658
EP  - 675
VL  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a2/
LA  - ru
ID  - MZM_2005_78_5_a2
ER  - 
%0 Journal Article
%A Yu. K. Dem'yanovich
%T Embedded Spaces of Trigonometric Splines and Their Wavelet Expansion
%J Matematičeskie zametki
%D 2005
%P 658-675
%V 78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a2/
%G ru
%F MZM_2005_78_5_a2
Yu. K. Dem'yanovich. Embedded Spaces of Trigonometric Splines and Their Wavelet Expansion. Matematičeskie zametki, Tome 78 (2005) no. 5, pp. 658-675. http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a2/

[1] Daubechies I., Ten Lectures on Wavelets, CMBS-NSR Regional Conference Series in Appl. Math., 61, SIAM, Philadelphia, PA, 1992 | MR

[2] Jawerth B., Sweldens W., “An overview of wavelet based multiresolution analyses”, SIAM Rev., 36 (1994), 377–412 | DOI | MR | Zbl

[3] Novikov I. Ya., Stechkin S. B., “Osnovy teorii vspleskov”, UMN, 53:6 (1998), 53–128 | MR | Zbl

[4] Demyanovich Yu. K., “Kalibrovochnoe sootnoshenie dlya $B$-splainov na neravnomernoi setke”, Matem. modelirovanie, 13:9 (2001), 98–100 | MR

[5] Demyanovich Yu. K., “Vspleskovye razlozheniya v prostranstvakh splainov na neravnomernoi setke”, Dokl. RAN, 382:3 (2002), 313–316

[6] Bakhvalov N. S., “O skhodimosti odnogo relaksatsionnogo metoda pri estestvennykh ogranicheniyakh na ellipticheskii operator”, ZhVMiMF, 6:5 (1966), 861–883 | Zbl

[7] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980