The Igusa Zeta Function Associated with a Composite Power Function on the Space of Rectangular Matrices
Matematičeskie zametki, Tome 78 (2005) no. 5, pp. 773-791.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the space of real rectangular $(n\times m)$ matrices, we introduce a composite power function and study the zeta integral associated with it. We describe the properties of the Igusa zeta function on the basis of the properties of a generalized composite power function and establish a functional relation for the zeta integral. As a result, the Fourier transform of a generalized composite power function is found in explicit form.
@article{MZM_2005_78_5_a12,
     author = {S. P. Khekalo},
     title = {The {Igusa} {Zeta} {Function} {Associated} with a {Composite} {Power} {Function} on the {Space} of {Rectangular} {Matrices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {773--791},
     publisher = {mathdoc},
     volume = {78},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a12/}
}
TY  - JOUR
AU  - S. P. Khekalo
TI  - The Igusa Zeta Function Associated with a Composite Power Function on the Space of Rectangular Matrices
JO  - Matematičeskie zametki
PY  - 2005
SP  - 773
EP  - 791
VL  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a12/
LA  - ru
ID  - MZM_2005_78_5_a12
ER  - 
%0 Journal Article
%A S. P. Khekalo
%T The Igusa Zeta Function Associated with a Composite Power Function on the Space of Rectangular Matrices
%J Matematičeskie zametki
%D 2005
%P 773-791
%V 78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a12/
%G ru
%F MZM_2005_78_5_a12
S. P. Khekalo. The Igusa Zeta Function Associated with a Composite Power Function on the Space of Rectangular Matrices. Matematičeskie zametki, Tome 78 (2005) no. 5, pp. 773-791. http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a12/

[1] Denef Zh., “O lokalnoi dzeta-funktsii Iguzy”, Trudy seminara N. Burbaki za 1991 g., Mir, M., 1998, 300–330

[2] Ournycheva E., Rubin B., An analogue of the Fuglede formula in integral geometry on matrix space, , 2004 E-print math.FA/0401127v1 | MR

[3] Petrov E. E., “Preobrazovanie Radona v prostranstve matrits”, Trudy seminara po vektornomu i tenzornomu analizu, 15, MGU, M., 1970, 299–315 | MR

[4] Khelgason S., Preobrazovanie Radona, Mir, M., 1983

[5] Vainberg B. R., Gindikin S. G., “Ob usilennom printsipe Gyuigensa dlya odnogo klassa differentsialnykh operatorov s postoyannymi koeffitsientami”, Tr. MMO, 16, URSS, M., 1967, 151–180 | MR

[6] Khekalo S. P., “Potentsialy Rissa v prostranstve pryamougolnykh matrits i izogyuigensova deformatsiya operatora Keli–Laplasa”, Dokl. RAN, 376:2 (2001), 168–170 | Zbl

[7] Faraut J., “Integrales de Marcel Riesz sur un cone symétrique”, Publ. Dep. Math. Nouv. Ser. B, Actes du colloque Jean Braconnier. V. 1 (Lyon, 1986), 1987, 17–30

[8] Clerc J.-L., “Zeta distributions associated to a representation of a Jordan algebra”, Math. Z., 239 (2002), 263–276 | DOI | Zbl

[9] Sato M., Shintani T., “On zeta-functions associated with prehomogeneous vector spaces”, Ann. of Math., 100 (1974), 131–170 | DOI | Zbl

[10] Gelbart S. S., Fourier Analysis on Matrix Space, Mem. Amer. Math. Soc., 108, Amer. Math. Soc., Providence, RI, 1971

[11] Rais M., Distributions homogènes sur des espaces de matrices, Thèse Sci. Math., Paris; Bull. Soc. Math. France Mém., 30, Soc. Math. France, Paris, 1972 | Zbl

[12] Faraut J., Koranyi A., Analysis on Symmetric Cones, Clarendon Press, Oxford, 1994 | Zbl

[13] Shibasov L. P., “Integralnye zadachi v prostranstve matrits, svyazannye s funktsionalom $X_{n,m}^\lambda$”, Izv. vuzov. Matem., 1973, no. 8, 101–112 | MR | Zbl

[14] Rubin B., Zeta integrals and integral geometry in the space of rectangular matrices, Preprint, The Hebrew Univ., Jerusalem, 2004

[15] Stein E. M., “Analysis in matrix spaces and some new representations of $SL(N,\mathbb{C})$”, Ann. of Math., 86:2 (1967), 461–490 | DOI | Zbl

[16] Herz C., “Bessel function of matrix argument”, Ann. of Math., 61:3 (1955), 474–523 | DOI | Zbl

[17] Bernshtein I. N., “Analiticheskoe prodolzhenie obobschennykh funktsii po parametru”, Funktsion. analiz i ego prilozh., 6:4 (1972), 26–40

[18] Gindikin S. G., “Analiz v odnorodnykh oblastyakh”, UMN, 19:4 (118) (1964), 3–92 | Zbl

[19] Gantmakher F. R., Teoriya matrits, Fizmatgiz, M., 1988

[20] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, Vyp. 2, Fizmatgiz, M., 1958

[21] Trev Zh., Lektsii po lineinym uravneniyam v chastnykh proizvodnykh s postoyannymi koeffitsientami, Mir, M., 1965 | Zbl

[22] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Vyp. 1, Fizmatgiz, M., 1985

[23] Shabat B. V., Vvedenie v kompleksnyi analiz, Ch. 2, Fizmatgiz, M., 1985

[24] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatgiz, M., 1989