Conjugacy Separability of Descending HNN-Extensions of Finitely Generated Abelian Groups
Matematičeskie zametki, Tome 78 (2005) no. 5, pp. 748-762.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that an arbitrary descending HNN-extension of a finitely generated Abelian group is conjugacy separable.
@article{MZM_2005_78_5_a10,
     author = {E. V. Sokolov},
     title = {Conjugacy {Separability} of {Descending} {HNN-Extensions} of {Finitely} {Generated} {Abelian} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {748--762},
     publisher = {mathdoc},
     volume = {78},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a10/}
}
TY  - JOUR
AU  - E. V. Sokolov
TI  - Conjugacy Separability of Descending HNN-Extensions of Finitely Generated Abelian Groups
JO  - Matematičeskie zametki
PY  - 2005
SP  - 748
EP  - 762
VL  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a10/
LA  - ru
ID  - MZM_2005_78_5_a10
ER  - 
%0 Journal Article
%A E. V. Sokolov
%T Conjugacy Separability of Descending HNN-Extensions of Finitely Generated Abelian Groups
%J Matematičeskie zametki
%D 2005
%P 748-762
%V 78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a10/
%G ru
%F MZM_2005_78_5_a10
E. V. Sokolov. Conjugacy Separability of Descending HNN-Extensions of Finitely Generated Abelian Groups. Matematičeskie zametki, Tome 78 (2005) no. 5, pp. 748-762. http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a10/

[1] Raptis E., Varsos D., “The residual finiteness of HNN-extensions and generalized free products of nilpotent groups: A characterization”, J. Aust. Math. Soc. Ser. A, 53:3 (1992), 408–420 | DOI | MR | Zbl

[2] Raptis E., Talelli O., Varsos D., “On the conjugacy separability of certain graphs of groups”, J. Algebra, 199:1 (1998), 327–336 | DOI | MR

[3] Moldavanskii D. I., “Finitnaya approksimiruemost nekotorykh HNN-rasshirenii grupp”, Vestn. Ivan. gos. un-ta, 2002, no. 3, 123–133

[4] Senkevich O. E., “Finitnaya approksimiruemost otnositelno sopryazhennosti nekotorykh HNN-rasshirenii grupp”, Algebra i teoriya chisel. Sovremennye problemy i prilozheniya, Tezisy dokl. V Mezhdunarodnoi konferentsii (Tula, 19–24 maya 2003 g.), TGPU, Tula, 2003, 201–202

[5] Moldavanskii D. I., “Finitnaya approksimiruemost niskhodyaschikh HNN-rasshirenii grupp”, Ukr. matem. zh., 44 (1992), 842–845

[6] Rhemtulla A. H., Shirvani M., “The residual finiteness of ascending HNN-extensions of certain soluble groups”, Illinois J. Math., 47:1–2 (2003), 477–484 | MR | Zbl

[7] Kargapolov M. I., Timoshenko E. I., “K voprosu o finitnoi approksimiruemosti otnositelno sopryazhennosti metabelevykh grupp”, 4-i Vsesoyuznyi simpozium po teorii grupp, Tezisy dokl. (Novosibirsk, 5–9 fevralya 1973 g.), Novosibirsk, 1973, 86–88

[8] Remeslennikov V. N., “Sopryazhennost v politsiklicheskikh gruppakh”, Algebra i logika, 8 (1969), 712–725 | Zbl

[9] Senkevich O. E., “O finitnoi approksimiruemosti otnositelno sopryazhennosti niskhodyaschikh HNN-rasshirenii konechno porozhdennykh abelevykh grupp”, Chebyshevskii sb., 5:2 (2004), 121–130

[10] Moldavanskii D. I., Kravchenko N. V., Frolova E. N., “Finitnaya approksimiruemost otnositelno sopryazhennosti nekotorykh grupp s odnim opredelyayuschim sootnosheniem”, Algoritmicheskie problemy teorii grupp i polugrupp, Tula, 1986, 81–91

[11] Maltsev A. I., “O gomomorfizmakh na konechnye gruppy”, Uchen. zap. Ivan. gos. ped. in-ta, 18 (1958), 49–60

[12] Noskov G. A., “O sopryazhennosti v metabelevykh gruppakh”, Matem. zametki, 31:4 (1982), 495–507 | Zbl

[13] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980

[14] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966