Discrete Universality of $L$-Functions for New Forms
Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 595-603

Voir la notice de l'article provenant de la source Math-Net.Ru

A Voronin-type discrete universality theorem for the $L$-functions of new forms is proved.
@article{MZM_2005_78_4_a8,
     author = {A. P. Laurincikas and K. Matsumoto and J. Steuding},
     title = {Discrete {Universality} of $L${-Functions} for {New} {Forms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {595--603},
     publisher = {mathdoc},
     volume = {78},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a8/}
}
TY  - JOUR
AU  - A. P. Laurincikas
AU  - K. Matsumoto
AU  - J. Steuding
TI  - Discrete Universality of $L$-Functions for New Forms
JO  - Matematičeskie zametki
PY  - 2005
SP  - 595
EP  - 603
VL  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a8/
LA  - ru
ID  - MZM_2005_78_4_a8
ER  - 
%0 Journal Article
%A A. P. Laurincikas
%A K. Matsumoto
%A J. Steuding
%T Discrete Universality of $L$-Functions for New Forms
%J Matematičeskie zametki
%D 2005
%P 595-603
%V 78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a8/
%G ru
%F MZM_2005_78_4_a8
A. P. Laurincikas; K. Matsumoto; J. Steuding. Discrete Universality of $L$-Functions for New Forms. Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 595-603. http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a8/