On the ``Destruction'' of Solutions of Nonlinear Wave Equations of Sobolev Type with Cubic Sources
Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 559-578.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider model three-dimensional wave nonlinear equations of Sobolev type with cubic sources, and foremost, model three-dimensional equations of Benjamin–Bona–Mahony and Rosenau types with model cubic sources. An essentially three-dimensional nonlinear equation of spin waves with cubic source is also studied. For these equations, we investigate the first initial boundary-value problem in a bounded domain with smooth boundary. We prove local solvability in the strong generalized sense and, for an equation of Benjamin–Bona–Mahony type with source, we prove the unique solvability of a “weakened” solution. We obtain sufficient conditions for the “destruction” of the solutions of the problems under consideration. These conditions have the sense of a “large” value of the initial perturbation in the norms of certain Banach spaces. Finally, for an equation of Benjamin–Bona–Mahony type, we prove the “failure” of a “weakened” solution in finite time.
@article{MZM_2005_78_4_a6,
     author = {M. O. Korpusov and A. G. Sveshnikov},
     title = {On the {``Destruction''} of {Solutions} of {Nonlinear} {Wave} {Equations} of {Sobolev} {Type} with {Cubic} {Sources}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {559--578},
     publisher = {mathdoc},
     volume = {78},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a6/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - A. G. Sveshnikov
TI  - On the ``Destruction'' of Solutions of Nonlinear Wave Equations of Sobolev Type with Cubic Sources
JO  - Matematičeskie zametki
PY  - 2005
SP  - 559
EP  - 578
VL  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a6/
LA  - ru
ID  - MZM_2005_78_4_a6
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A A. G. Sveshnikov
%T On the ``Destruction'' of Solutions of Nonlinear Wave Equations of Sobolev Type with Cubic Sources
%J Matematičeskie zametki
%D 2005
%P 559-578
%V 78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a6/
%G ru
%F MZM_2005_78_4_a6
M. O. Korpusov; A. G. Sveshnikov. On the ``Destruction'' of Solutions of Nonlinear Wave Equations of Sobolev Type with Cubic Sources. Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 559-578. http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a6/

[1] Korpusov M. O., Sveshnikov A. G., “Trekhmernye nelineinye evolyutsionnye uravneniya psevdoparabolicheskogo tipa v zadachakh matematicheskoi fiziki, II”, ZhVMiMF, 44:11 (2004), 2041–2048 | MR | Zbl

[2] Benjamin T. B., “Lectures on nonlinear wave motion”, Lect. Appl. Math., 15, Amer. Math. Soc., Providence, RI, 1974, 3–47 | MR

[3] Benjamin T. B., Bona J. L., Mahony J. J., “Model equations for long waves in nonlinear dispersive systems”, Philos. Trans. Royal Soc. London Ser. A, 272:1220 (1972), 47–78 | DOI | MR | Zbl

[4] Karch G., “Asymptotic behavior of solutions to some pseudoparabolic equations”, Math. Methods Appl. Sci., 20:3 (1997), 271–289 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] Biler P., “Long time behavior of the generalized Benjamin–Bona–Mahony equation in two space dimensions”, Differential Integral Equations, 5:4 (1992), 891–901 | MR | Zbl

[6] Goldstein J. A., Kajikiya R., Oharu S., “On some nonlinear dispersive equations in several space variables”, Differential Integral Equations, 3:4 (1990), 617–632 | MR | Zbl

[7] Zhang L., “Decay of solutions of generalized BBMB equations in $n$-space dimensions”, J. Nonlinear Anal. Theory Methods Appl., 20 (1995), 1343–1390 | DOI | MR

[8] Naumkin P. I., Shishmarev I. A., Nonlinear Nonlocal Equations in the Theory of Waves, Transl. Math. Monographs, 133, Amer. Math. Soc., Providence, RI, 1994 | Zbl

[9] Naumkin P. I., “Large-time asymptotic behaviour of a step for the Benjamin–Bona–Mahony–Burgers equation”, Proc. Roy. Soc. Edinburgh Sect. A, 126:1 (1996), 1–18 | Zbl

[10] Avrin J., Goldstein J. A., “Global existence for the Benjamin–Bona–Mahony equation in arbitrary dimensions”, J. Nonlinear Anal. Theory Methods Appl., 9:8 (1985), 861–865 | DOI | Zbl

[11] Jeffrey A., Engelbrecht J., “Nonlinear dispersive waves in a relaxing medium”, Wave Motion, 2:3 (1980), 255–266 | DOI | Zbl

[12] Albert J. P., “On the decay of solutions of the generalized Benjamin–Bona–Mahony equation”, J. Math. Anal. Appl., 141:2 (1989), 527–537 | DOI | Zbl

[13] Pereira J. M., “Stability of multidimensional traveling waves for a Benjamin–Bona–Mahony type equation”, Differential Integral Equations, 9:4 (1996), 849–863 | Zbl

[14] Hagen T., Turi J., “On a class of nonlinear BBM-like equations”, Comput. Appl. Math., 17:2 (1998), 161–172 | Zbl

[15] Medeiros L. A., Perla Menzala G., “On global solutions of a nonlinear dispersive equation of Sobolev type”, Bol. Soc. Brasil. Mat., 9:1 (1978), 49–59 | DOI | Zbl

[16] Guo B., Miao Ch., “On inhomogeneous GBBM equations”, J. Partial Differential Equations, 8:3 (1995), 193–204 | Zbl

[17] Mei M., “$\mathbf{L}_q$-decay rates of solutions for Benjamin–Bona–Mahony–Burgers equations”, J. Differential Equations, 158:2 (1999), 314–340 | DOI | Zbl

[18] Li Z., “On the initial-boundary value problem for the system of multi-dimensional generalized BBM equations”, Math. Appl., 3:4 (1990), 71–80

[19] Chen Yu., “Remark on the global existence for the generalized Benjamin–Bona–Mahony equations in arbitrary dimension”, Appl. Anal., 30:1–3 (1988), 1–15 | DOI | Zbl

[20] Liu L., Mei M., “A better asymptotic profile of Rosenau–Burgers equation”, J. Appl. Math. Comput., 131:1 (2002), 147–170 | DOI | Zbl

[21] Chung Sang K., Pani Amiya K., “Numerical methods for the Rosenau equation”, J. Appl. Anal., 77:3–4 (2001), 351–369 | DOI | Zbl

[22] Lee H. Y., Ohm M. R., Shin J. Y., “The convergence of fully discrete Galerkin approximations of the Rosenau equation”, Korean J. Comput. Appl. Math., 6:1 (1999), 1–13 | Zbl

[23] Mei M., “Long-time behavior of solution for Rosenau–Burgers equation, II”, J. Appl. Anal., 68:3–4 (1998), 333–356 | Zbl

[24] Chung S. K., Ha S. N., “Finite element Galerkin solutions for the Rosenau equation”, J. Appl. Anal., 54:1–2 (1994), 39–56 | DOI | Zbl

[25] Park M. A., “On the Rosenau equation in multidimensional space”, J. Nonlinear Anal. Theory Methods Appl., 21:1 (1993), 77–85 | DOI | Zbl

[26] Park M. A., “Pointwise decay estimates of solutions of the generalized Rosenau equation”, J. Korean Math. Soc., 29:2 (1992), 261–280 | Zbl

[27] Korpusov M. O., Pletner Yu. D., Sveshnikov A. G., “O nestatsionarnykh volnakh v sredakh s anizotropnoi dispersiei”, ZhVMiMF, 39:6 (1999), 1006–1022

[28] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988