On Some Extremal Varieties of Associative Algebras
Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 542-558
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $F$ is a field of prime characteristic $p$ and $\mathbf V_p$ is the variety of associative algebras over $F$ defined by the identities $[[x,y],z]=0$ and $x^p=0$ if $p>2$ and by the identities $[[x,y],z]=0$ and $x^4=0$ if $p=2$ (here $[x,y]=xy-yx$). As is known, the free algebras of countable rank of the varieties $\mathbf V_p$ contain non-finitely generated $T$-spaces. We prove that the varieties $\mathbf V_p$ are minimal with respect to this property.
@article{MZM_2005_78_4_a5,
author = {E. A. Kireeva and A. N. Krasilnikov},
title = {On {Some} {Extremal} {Varieties} of {Associative} {Algebras}},
journal = {Matemati\v{c}eskie zametki},
pages = {542--558},
publisher = {mathdoc},
volume = {78},
number = {4},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a5/}
}
E. A. Kireeva; A. N. Krasilnikov. On Some Extremal Varieties of Associative Algebras. Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 542-558. http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a5/