On Some Extremal Varieties of Associative Algebras
Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 542-558

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $F$ is a field of prime characteristic $p$ and $\mathbf V_p$ is the variety of associative algebras over $F$ defined by the identities $[[x,y],z]=0$ and $x^p=0$ if $p>2$ and by the identities $[[x,y],z]=0$ and $x^4=0$ if $p=2$ (here $[x,y]=xy-yx$). As is known, the free algebras of countable rank of the varieties $\mathbf V_p$ contain non-finitely generated $T$-spaces. We prove that the varieties $\mathbf V_p$ are minimal with respect to this property.
@article{MZM_2005_78_4_a5,
     author = {E. A. Kireeva and A. N. Krasilnikov},
     title = {On {Some} {Extremal} {Varieties} of {Associative} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {542--558},
     publisher = {mathdoc},
     volume = {78},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a5/}
}
TY  - JOUR
AU  - E. A. Kireeva
AU  - A. N. Krasilnikov
TI  - On Some Extremal Varieties of Associative Algebras
JO  - Matematičeskie zametki
PY  - 2005
SP  - 542
EP  - 558
VL  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a5/
LA  - ru
ID  - MZM_2005_78_4_a5
ER  - 
%0 Journal Article
%A E. A. Kireeva
%A A. N. Krasilnikov
%T On Some Extremal Varieties of Associative Algebras
%J Matematičeskie zametki
%D 2005
%P 542-558
%V 78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a5/
%G ru
%F MZM_2005_78_4_a5
E. A. Kireeva; A. N. Krasilnikov. On Some Extremal Varieties of Associative Algebras. Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 542-558. http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a5/